Searched for: in-biosketch:yes
person:margor01
Complex carbohydrate composition of large dense-cored vesicles from sympathetic nerve
Margolis RU; Ledeen RW; Sbaschnig-Agler M; Byrne MC; Klein RL; Douglas BH 2d; Margolis RK
Highly purified noradrenergic, large, dense-cored vesicles were isolated from bovine sympathetic nerve endings by sucrose-D2O density gradient centrifugation. Their concentration of glycoprotein hexosamine and sialic acid was 6.6 and 3.9 mumol/100 mg lipid-free dry weight, respectively, values which are similar to those previously found in bovine chromaffin granules. However, whereas chromaffin granule glycoproteins are characterized by their high proportion of N-acetylgalactosamine-containing O-glycosidically-linked oligosaccharides (present in the chromogranins), such oligosaccharides accounted for only 17% of those in noradrenergic synaptic vesicle glycoproteins. Fractionation of N-3H-acetylated glycopeptides by sequential lectin affinity chromatography demonstrated that approximately two-thirds of the oligosaccharides were of the tri- and tetraantennary complex type, accompanied by 14% biantennary oligosaccharides and 3% high-mannose oligosaccharides. The vesicles had a relatively low concentration of chondroitin sulfate (less than 5% of that in chromaffin granules) but significant amounts of heparan sulfate (0.4 mumol N-acetylglucosamine/100 mg lipid-free dry weight). No hyaluronic acid was detected. The concentration of ganglioside sialic acid in the noradrenergic vesicles was approximately 1 mumol/100 mg lipid-free dry weight, which is significantly higher than that of a crude membrane mixture from which the vesicles were prepared; the ratio of N-acetyl- to N-glycolylneuraminic acid was 0.8. Several molecular species of gangliosides were detected by thin-layer chromatography, but most of these did not exactly comigrate with bovine brain gangliosides. Cholera toxin binding indicated that approximately half or less of the gangliosides belong to the gangliotetraose series
PMID: 3681300
ISSN: 0022-3042
CID: 11301
Effects of nerve growth factor-induced differentiation on the heparan sulfate of PC12 pheochromocytoma cells and comparison with developing brain
Margolis RK; Salton SR; Margolis RU
We have examined the size, charge, and sulfation pattern of heparan sulfate in the cell-soluble fraction, membranes, and culture medium of PC12 pheochromocytoma cells cultured in the presence and absence of nerve growth factor (NGF) and compared the structural features of PC12 cell heparan sulfate to that of rat brain at several stages of early postnatal development. Nitrous acid degradation studies revealed significant differences in the distribution of N-sulfate and N-acetyl groups in heparan sulfate present in the PC12 cell-soluble fraction, membranes, and medium and demonstrated that NGF treatment led to an increased proportion of N-sulfated segments in the cell-associated heparan sulfate, although no such change was seen in that released into the culture medium. There was very little change in the N-sulfation of brain heparan sulfate during the first 30 days after birth. In brain, most of the heparan sulfate glucosamine residues are N-sulfated and yield predominantly di- and tetrasaccharide nitrous acid degradation products, whereas PC12 cell heparan sulfate contains large blocks of N-acetylglucosamine residues. There was very little difference in the overall charge or size (approximately 15,000 Da) of heparan sulfate chains between the different PC12 cell fractions or brain, although NGF treatment led to a decrease in the proportion of less-charged chains in the PC12 cell membranes and a small increase in molecular size. Our studies therefore demonstrate the presence in PC12 cells of several pools of heparan sulfate having different structural properties, and that significant alterations in the charge, size, and sulfation pattern of PC12 cell heparan sulfate accompany NGF-induced differentiation and neurite outgrowth
PMID: 2957958
ISSN: 0003-9861
CID: 33491
Structural studies on sialylated and sulphated O-glycosidic mannose-linked oligosaccharides in the chondroitin sulphate proteoglycan of brain
Krusius T; Reinhold VN; Margolis RK; Margolis RU
We have previously described the structures of neutral and sialylated O-glycosidic mannose-linked tetrasaccharides and keratan sulphate polysaccharide chains in the chondroitin sulphate proteoglycan of brain. The present paper provides information on a series of related sialylated and/or sulphated tri- to penta-saccharides released by alkaline-borohydride treatment of the proteoglycan glycopeptides. The oligosaccharides were fractionated by ion-exchange chromatography and gel filtration, and their structural properties were studied by methylation analysis and fast-atom-bombardment mass spectrometry. Five fractions containing [35S]sulphate-labelled oligosaccharides were obtained by ion-exchange chromatography, each of which was eluted from Sephadex G-50 as two well-separated peaks. The apparent Mr values of both the large- and small-molecular-size fractions increased with increasing acidity (and sulphate labelling) of the oligosaccharides. The larger-molecular-size fractions contained short mannose-linked keratan sulphate chains of Mr 3000-4500, together with some asparagine-linked oligosaccharides. The smaller tri- to penta-saccharides, of Mr 800-1400, appear to have a common GlcNac(beta 1-3)Manol core, and to contain one to two residues of sialic acid and/or sulphate
PMCID:1148104
PMID: 3663149
ISSN: 0264-6021
CID: 33492
Occurrence of the HNK-1 epitope (3-sulfoglucuronic acid) in PC12 pheochromocytoma cells, chromaffin granule membranes, and chondroitin sulfate proteoglycans
Margolis RK; Ripellino JA; Goossen B; Steinbrich R; Margolis RU
After biosynthetic labeling of sulfated glycoproteins in rat and goldfish brain and PC12 pheochromocytoma cells with sodium [35S]sulfate, it was observed that all of the bands reactive with the HNK-1 antibody on immunoblots of sodium dodecyl sulfate-polyacrylamide gels corresponded with sulfate-labeled proteins detected by fluorography. These results support data from other studies, which indicate that the HNK-1 epitope is a 3-sulfo-glucuronic acid residue. In addition to its presence in a wide range of nervous tissue glycoproteins, the HNK-1 epitope was also detected in chromaffin granule membranes, chondroitinase ABC, and in chondroitin sulfate proteoglycans of brain, cartilage, and chondrosarcoma. However, it is not present in the heparan sulfate proteoglycan of brain, or in either of two chondroitin sulfate/dermatan sulfate proteoglycans in the chromaffin granule matrix
PMID: 3606598
ISSN: 0006-291x
CID: 33493
Cell surface and extracellular matrix glycoproteins and proteoglycans in nervous tissue
Chapter by: Margolis RU; Ripellino JA; Margolis RK
in: Mesenchymal-epithelial interactions in neural development by Wolff JR; Sievers J; Berry M [Eds]
Berlin : Springer-Verlag, 1987
pp. 65-76
ISBN: 0387174400
CID: 2878
Identification of an O-glycosidic mannose-linked sialylated tetrasaccharide and keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of brain
Krusius T; Finne J; Margolis RK; Margolis RU
The chondroitin sulfate proteoglycan of rat brain was digested with Pronase, and after removal of glycosaminoglycans, the resulting glycopeptides were treated with alkaline borohydride to release O-glycosidically linked oligosaccharides. These were fractionated by ion exchange chromatography, gel filtration, and preparative thin layer chromatography, and their structural properties were studied by specific enzymatic degradations, methylation analysis, and gas-liquid chromatography-mass spectrometry of disaccharides as their trimethylsilylated and permethylated derivatives. In addition to the previously characterized N-acetyl-galactosamine-linked oligosaccharides and neutral mannitol-containing oligosaccharides [GlcNAc(beta 1-3) Manol and Gal(beta 1-4)[Fuc(alpha 1-3)]GlcNAc(beta 1-3)Manol] (where Fuc is fucose), we have now identified the sialylated tetrasaccharide NeuAc(alpha 2-3)Gal(beta 1-4)GlcNAc (beta 1-3)Manol, which accounts for approximately 20% of the mannitol-containing oligosaccharides. The proteoglycan also contains mannose-linked keratan sulfate chains (with a molecular size of 3,000 to 10,000 Da) composed of disaccharide repeating units consisting of Gal(beta 1-4)GlcNAc-6-O-SO4(beta 1-3), with a small proportion of branch points at C-6 of galactose residues. There is approximately one keratan sulfate chain per four chondroitin sulfate chains of 18,000-19,000 Da. After alkaline borohydride treatment of the neutral and monosialyl glycopeptide fractions, the combined decrease in mannose and N-acetylgalactosamine was very close to the observed destruction of serine + threonine and was accompanied by an equimolar increase in alanine and alpha-aminobutyric acid. One half of the mannose was destroyed by alkaline borohydride treatment of the glycopeptides and stoichiometrically converted to mannitol, while there were only small changes in the relative amounts of the other sugars and amino acids. The data demonstrate that over half of the carbohydrate-peptide linkages in the proteoglycan are of the mannosyl-O-serine/threonine type
PMID: 2941416
ISSN: 0021-9258
CID: 33494
Poly(N-acetyllactosaminyl) oligosaccharides in glycoproteins of PC12 pheochromocytoma cells and sympathetic neurons
Margolis RK; Greene LA; Margolis RU
Endo-beta-galactosidase treatment of glycopeptides derived from the trypsinate and membranes of PC12 pheochromocytoma cells and cultured sympathetic neurons demonstrated the presence of poly(N-acetyllactosaminyl) units on tri- and tetraantennary oligosaccharides, some of which have a core fucose residue and a 2,6-substituted alpha-linked mannose residue. Nerve growth factor induced differentiation of the PC12 cells led to a small but significant decrease in the proportion of these oligosaccharides. Poly(N-acetyllactosaminyl) oligosaccharides were also identified in a major 230 000-Da cell-surface glycoprotein (the nerve growth factor inducible large external, or NILE, glycoprotein) of PC12 cells and appear to account for much or all of the difference in size between this glycoprotein as compared to the immunochemically cross-reactive 205 000-Da species present in postnatal brain. Glycoproteins containing poly(N-acetyllactosaminyl) oligosaccharides were selectively labeled by treatment of PC12 cells with endo-beta-galactosidase to expose N-acetylglucosamine residues, followed by incubation with galactosyltransferase and UDP-[14C]galactose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography revealed the presence of a number of distinct PC12 cell glycoproteins that contain these oligosaccharides and have apparent molecular weights in the range of 25 000-250 000. Treatment of PC12 cells with nerve growth factor (NGF) altered the relative labeling of several of the glycoprotein bands, with a time course similar to the effects of NGF on neurite outgrowth.(ABSTRACT TRUNCATED AT 250 WORDS)
PMID: 3755358
ISSN: 0006-2960
CID: 33495
Structure and localization of nervous tissue proteoglycans
Margolis RU; Aquino DA; Klinger MM; Ripellino JA; Margolis RK
PMID: 3468864
ISSN: 0077-8923
CID: 33496
The hyaluronic acid binding region as a specific probe for the localization of hyaluronic acid in tissue sections. Application to chick embryo and rat brain
Ripellino JA; Klinger MM; Margolis RU; Margolis RK
The hyaluronic acid binding region was prepared by clostripain digestion of chondroitin sulfate proteoglycan isolated from the Swarm rat chondrosarcoma, and biotinylated in the presence of associated hyaluronic acid and link protein. After removal of hyaluronic acid by gel filtration in 4 M guanidine HCl, the biotinylated binding region-link protein complex was used as a specific histochemical probe in conjunction with avidin-peroxidase. Its utility was initially evaluated by comparison with Alcian blue staining of the axial region of 2 to 5 day chick embryos, where staining was seen in the dorsolateral area between the neural tube and the ectoderm, in the perichordal mesenchyme, and in developing limb buds. Light and electron microscopic studies of early postnatal rat cerebellum indicate that hyaluronic acid is primarily localized in the extracellular space of immature brain. Staining specificity was demonstrated by the ability of hyaluronic acid oligosaccharides of appropriate size to block the staining reaction, and by the absence of staining after treatment of tissue sections with protease-free Streptomyces hyaluronidase, which degrades only this glycosaminoglycan
PMID: 4045184
ISSN: 0022-1554
CID: 33497
Isolation and characterization of the heparan sulfate proteoglycans of brain. Use of affinity chromatography on lipoprotein lipase-agarose
Klinger MM; Margolis RU; Margolis RK
Heparan sulfate proteoglycans were extracted from rat brain microsomal membranes or whole forebrain with deoxycholate and purified from accompanying chondroitin sulfate proteoglycans and membrane glycoproteins by ion-exchange chromatography, affinity chromatography on lipoprotein lipase-Sepharose, and gel filtration. The proteoglycan has a molecular size of approximately 220,000, containing glycosaminoglycan chains of Mr = 14,000-15,000. In [3H]glucosamine-labeled heparan sulfate proteoglycans, approximately 22% of the radioactivity is present in glycoprotein oligosaccharides, consisting predominantly of N-glycosidically linked tri- and tetraantennary complex oligosaccharides (60%, some of which are sulfated) and O-glycosidic oligosaccharides (33%). Small amounts of chondroitin sulfate (4-6% of the total glycosaminoglycans) copurified with the heparan sulfate proteoglycan through a variety of fractionation procedures. Incubation of [35S]sulfate-labeled microsomes with heparin or 2 M NaCl released approximately 21 and 13%, respectively, of the total heparan sulfate, as compared to the 8-9% released by buffered saline or chondroitin sulfate and the 82% which is extracted by 0.2% deoxycholate. It therefore appears that there are at least two distinct types of association of heparan sulfate proteoglycans with brain membranes
PMID: 3156851
ISSN: 0021-9258
CID: 33498