Searched for: in-biosketch:yes
person:moonst01
N-hydroxy-4-aminobiphenyl-DNA binding in human p53 gene: sequence preference and the effect of C5 cytosine methylation
Feng, Zhaohui; Hu, Wenwei; Rom, William N; Beland, Frederick A; Tang, Moon-shong
4-Aminobiphenyl (4-ABP) is a major etiological agent for human bladder cancer. Metabolically activated 4-ABP is able to interact with DNA to form adducts that may induce mutations and initiate carcinogenesis. Thirty to sixty percent of bladder cancer has a mutation in the tumor suppressor p53 gene, and the mutational spectrum bears unique features. To date the DNA binding spectrum of 4-ABP in the p53 gene is not known due to the lack of methodology to detect 4-ABP-DNA adducts at nucleotide sequence level. We have found that UvrABC nuclease, a nucleotide excision repair complex isolated from Escherichia coli, is able to incise specifically and quantitatively DNA fragments modified with N-hydroxy-4-aminobiphenyl (N-OH-4-ABP), an activated intermediate of 4-ABP. Using the UvrABC nuclease incision method, we mapped the binding spectrum of N-OH-4-ABP in DNA fragments containing exons 5, 7, and 8 of the human p53 gene and also determined the effect of C5 cytosine methylation on N-OH-4-ABP-DNA binding. We found that codon 285, a mutational hotspot at a non-CpG site in bladder cancer, is the preferential binding site for N-OH-4-ABP. We also found that C5 cytosine methylation greatly enhanced N-OH-4-ABP binding at CpG sites, and that two mutational hotspots at CpG sites, codons 175 and 248, became preferential binding sites for N-OH-4-ABP only after being methylated. These results suggest that both the unique DNA binding specificity of 4-ABP and cytosine methylation contribute to the mutational spectrum of the p53 gene in human bladder cancer
PMID: 12009904
ISSN: 0006-2960
CID: 32120
Transcription-coupled DNA repair is genomic context-dependent
Feng, Zhaohui; Hu, Wenwei; Komissarova, Elena; Pao, Annie; Hung, Mien-Chie; Adair, Gerald M; Tang, Moon-shong
DNA damage is preferentially repaired in the transcribed strand of many active genes. Although the concept of DNA repair coupled with transcription has been widely accepted, its mechanisms remain elusive. We recently reported that in Chinese hamster ovary cells while ultraviolet light-induced cyclobutane pyrimidine dimers (CPDs) are preferentially repaired in the transcribed strand of dihydrofolate reductase gene, CPDs are efficiently repaired in both strands of adenine phosphoribosyltransferase (APRT) locus, in either a transcribed or nontranscribed APRT gene (1). These results suggested that the transcription dependence of repair may depend on genomic context. To test this hypothesis, we constructed transfectant cell lines containing a single, actively transcribed APRT gene, integrated at different genomic sites. Mapping of CPD repair in the integrated APRT genes in three transfectant cell lines revealed two distinct repair patterns, either preferential repair of CPDs in the transcribed strand or very poor repair in both strands. Similar kinetics of micrococcal nuclease digestion were seen for all three transfectant APRT gene domains and endogenous APRT locus. Our results suggest that both the efficiency and strand-specificity of repair of an actively transcribed gene are profoundly affected by genomic context but do not reflect changes in first order nucleosomal structure
PMID: 11821423
ISSN: 0021-9258
CID: 39720
Mapping polycyclic aromatic hydrocarbon and aromatic amine-induced DNA damage in cancer-related genes at the sequence level
Tang, Moon-shong; Pfeifer, Gerd P; Denissenko, Mikhail F; Feng, Zhaohui; Hu, Wenwei; Pao, Annie; Zheng, Yi; Zheng, Jessica B; Li, Haiying; Chen, James X
Genomic injury induced by environmental carcinogens, such as polycyclic aromatic hydrocarbons and aromatic amines, is the initial step that can trigger mutagenesis and carcinogenesis. In addition to the physico-chemical property of DNA damaging agents, several important factors such as primary sequence, chromatin structure, methylation, protein association, and transcriptional activity can affect not only the initial level and distribution of DNA damage but also the efficiency of repair. Therefore, mapping the DNA damage induced by environmental agents in cancer-related genes such as p53 and ras at the sequence level provides essential information for assessing their carcinogenic potential. Recently, using the E. coli nucleotide excision enzyme complex, UvrABC nucleases in combination with ligation-mediated polymerase chain reaction, we developed a method to map DNA damage in the p53 and ras genes. These studies led us to conclude that targeted DNA damage, in combination with growth selection, contributes greatly in shaping the mutation spectrum in these genes in human cancer. Here we present the rationale and details of this approach, typical experimental results and necessary precautions
PMID: 12018002
ISSN: 1438-4639
CID: 39640
Molecular responses of mammalian cells to nickel and chromate exposure
Chapter by: Costa M; Salnikow K; Sutherland JE; Klutz T; Peng W; Tang M-S
in: Biomarkers of environmentally associated disease : technologies, concepts, and perspectives by Wilson SH; Suk WA [Eds]
Boca Raton FL : Lewis Publishers, 2002
pp. 261-265
ISBN: 1566705967
CID: 4434
Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers
Yoon, J H; Smith, L E; Feng, Z; Tang, M; Lee, C S; Pfeifer, G P
A large fraction of the p53 mutations in lung cancers from smokers are G-to-T transversions, a type of mutation that is infrequent in lung cancers from nonsmokers and in most other tumors. Previous studies have indicated that there is an association between G-to-T transversion hotspots in lung cancers and sites of preferential formation of polycyclic aromatic hydrocarbon adducts along the p53 gene. p53 codons containing methylated CpG sequences are preferential targets for formation of adducts by (+/-) anti-7beta,8alpha-dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE). To assess the role of CpG methylation in induction of mutations by BPDE, we analyzed BPDE mutagenesis in three CpG methylated target genes: a supF shuttle vector and the cII and lacI transgenes in embryonic mouse fibroblasts. After methylation of the shuttle vector at all CpG sequences, 42% of all G-to-T transversions were at CpG sites compared with 23% in unmethylated DNA. In the cII transgene, which is methylated at CpG sequences in vivo, 83 of 147 (56%) of the BPDE-induced mutations were G-to-T transversions, and 58% (48 of 83) of all G-to-T transversions occurred at methylated CpG sequences. In the lacI gene, 68% (75 of 111) of the BPDE-induced mutations were G-to-T events, and 58 of 75 (77%) of these occurred at methylated CpG sequences. The occurrence of transversion hotspots at methylated CpGs correlated with high levels of BPDE adducts formed at such sites. This situation mirrors the one in the p53 gene in lung cancers from smokers where 236 of 465 (51%) of the G-to-T transversions occurred at methylated CpG sites. These findings further strengthen a link between polycyclic aromatic hydrocarbons present in cigarette smoke and lung cancer mutations and provide evidence that mutational processes other than C-to-T transition mutations can occur selectively at methylated CpG sequences.
PMID: 11585742
ISSN: 0008-5472
CID: 3887362
Sequence-dependent interactions of two forms of UvrC with DNA helix-stabilizing CC-1065-N3-adenine adducts
Nazimiec, M; Lee, C S; Tang, Y L; Ye, X; Case, R; Tang, M
The uvrA, uvrB, and uvrC genes of Escherichia coli control the initial steps of nucleotide excision repair. The uvrC gene product is involved in at least one of the dual incisions produced by the UvrABC complex. Using single-stranded (ss) DNA affinity chromatography, we have separated two forms of UvrC from both wild-type E. coli cells and overproducing cells. UvrCI elutes at 0.4 M KCl, and UvrCII elutes at 0.6 M KCl. In general, both forms, in the presence of UvrA and UvrB, actively incise UV-irradiated and CC-1065-modified DNA in the same fashion; i.e., they incise six to eight nucleotides 5' to and three to five nucleotides 3' to a photoproduct or a CC-1065-N3-adenine adduct. They produce different incisions, however, at a CC-1065-N3-adenine adduct in the sequence 5'-GATTACG- present in the MspI-BstNI 117 bp fragment of M13mp1. UvrABCI incises at both the 5' and 3' sides of the adduct (UvrABCI cut), while UvrABCII incises only at the 5' side (UvrABCII cut). Mixing UvrCI and UvrCII results in both UvrABCI and UvrABCII cuts, and the levels of these two types of cutting are proportional to the amount of UvrCI and UvrCII. DNase I footprints of the MspI-BstNI 117 bp DNA fragment containing a site-directed CC-1065-adenine adduct at the 5'-GATTACG- site show that UvrCII, but not UvrCI, binds to the adduct site. Furthermore, the pattern of DNase I footprints induced by UvrCII binding differs from the pattern of the footprints induced by UvrA, UvrAB, and UvrABCI binding. Interestingly, while the presence of unirradiated DNA enhances the efficiency of UvrABCII in incising UV-irradiated DNA, it does not enhance UvrABCII incision of the CC-1065-N3-adenine adduct formed at 5'-GATTACG-. These results show that two different forms of UvrC differ in DNA binding properties as well as incision modes at some kinds of DNA damage.
PMID: 11551204
ISSN: 0006-2960
CID: 4049032
Cyclobutane pyrimidine dimers and bulky chemical DNA adducts are efficiently repaired in both strands of either a transcriptionally active or promoter-deleted APRT gene
Zheng, Y; Pao, A; Adair, G M; Tang , M
Both prokaryotic and eukaryotic cells have the capacity to repair DNA damage preferentially in the transcribed strand of actively expressed genes. However, we have found that several types of DNA damage, including cyclobutane pyrimidine dimers (CPDs) are repaired with equal efficiency in both the transcribed and nontranscribed strands of the adenine phosphoribosyltransferase (APRT) gene in Chinese hamster ovary cells. We further found that, in two mutant cell lines in which the entire APRT promoter region has been deleted, CPDs are still efficiently repaired in both strands of the promoterless APRT gene, even though neither strand appears to be transcribed. These results suggest that efficient repair of both strands at this locus does not require transcription of the APRT gene. We have also mapped CPD repair in exon 3 of the APRT gene in each cell line at single nucleotide resolution. Again, we found similar rates of CPD repair in both strands of the APRT gene domain in both APRT promoter-deletion mutants and their parental cell line. Our findings suggest that current models of transcription-coupled repair and global genomic repair may underestimate the importance of factors other than transcription in governing the efficiency of nucleotide excision repair.
PMID: 11278801
ISSN: 0021-9258
CID: 163498
The effect of C(5) cytosine methylation at CpG sequences on mitomycin-DNA bonding profiles
Li, V S; Tang, M S; Kohn, H
Recent studies have documented that cytosine C(5) methylation of CpG sequences enhances mitomycin C (1) adduction. The reports differ on the extent and uniformity of 1 modification at the nucleotide level. We have determined the bonding profiles for mitomycin monoalkylation in two DNA restriction fragments where the CpG sequences were methylated. Three mitomycin substrates were used and two different enzymatic assays employed to monitor the extent of drug modification at the individual base sites. Drug DNA modification was accomplished with I and 10-decarbamoylmitomycin C (2) under reductive (Na2S2O4) condilions and with N-methyl-7-methoxyaziridinomitosene (3) under nonreductive conditions. The UvrABC incision assay permitted us to quantitate the sites of drug adduction, and the lambda-exonuclease stop assay provided a qualitative estimation of drug-DNA modification consistent with the UvrABC data. We learned that C(5) cytosine methylation (m5C) enhanced the extent of overall DNA modification. Using the UvrABC endonuclease assay, we found that modification by 1 increased 2.0 and 7.4 times for the two DNA restriction fragments. Analysis of the modification sites at the nucleotide sequence level revealed that guanine (G) was the only base modified and that the overall increased level of DNA adduction was due to enhanced modification of select m5CpG* (G* = mitomycin (mitosene) adduction sites) loci compared with CpG* sites: the largest differences reached two orders of magnitude. Significantly, not all CpG* sites underwent increased drug adduction upon C(5) cytosine methylation. The effect of C(5) cytosine methylation on the drug adduction profiles was less pronounced for G* sites located within dinucleotide sequences other than CpG*. We observed that DNA methylation often led to slightly diminished adduction levels at these sites. The different m5CpG* adduction patterns provided distinctive sequence-selective bonding profiles for 1-3. We have attributed the large differences in guanine reactivity to DNA structural factors created, in part, by C(5) cytosine methylation. The significance of these findings in cancer chemotherapy is briefly discussed.
PMID: 11354669
ISSN: 0968-0896
CID: 3887002
Two forms of UvrC protein with different double-stranded DNA binding affinities
Tang Ms; Nazimiec M; Ye X; Iyer GH; Eveleigh J; Zheng Y; Zhou W; Tang YY
Using phosphocellulose followed by single-stranded DNA-cellulose chromatography for purification of UvrC proteins from overproducing cells, we found that UvrC elutes at two peaks: 0.4 m KCl (UvrCI) and 0.6 m KCl (UvrCII). Both forms of UvrC have a major peptide band (>95%) of the same molecular weight and identical N-terminal amino acid sequences, which are consistent with the initiation codon being at the unusual GTG site. Both forms of UvrC are active in incising UV-irradiated, supercoiled phiX-174 replicative form I DNA in the presence of UvrA and UvrB proteins; however, the specific activity of UvrCII is one-fourth that of UvrCI. The molecular weight of UvrCII is four times that of UvrCI on the basis of results of size exclusion chromatography and glutaraldehyde cross-linking reactions, indicating that UvrCII is a tetramer of UvrCI. Functionally, these two forms of UvrC proteins can be distinguished under reaction conditions in which the protein/nucleotide molar ratio is >0.06 by using UV-irradiated, (32)P-labeled DNA fragments as substrates; under these conditions UvrCII is inactive in incision, but UvrCI remains active. The activity of UvrCII in incising UV-irradiated, (32)P- labeled DNA fragments can be restored by adding unirradiated competitive DNA, and the increased level of incision corresponds to a decreased level of UvrCII binding to the substrate DNA. The sites of incision at the 5' and 3' sides of a UV-induced pyrimidine dimer are the same for UvrCI and UvrCII. Nitrocellulose filter binding and gel retardation assays show that UvrCII binds to both UV-irradiated and unirradiated double-stranded DNA with the same affinity (K(a), 9 x 10(8)/m) and in a concentration-dependent manner, whereas UvrCI does not. These two forms of UvrC were also produced by the endogenous uvrC operon. We propose that UvrCII-DNA binding may interfere with Uvr(A)(2)B-DNA damage complex formation. However, because of its low copy number and low binding affinity to DNA, UvrCII may not interfere with Uvr(A)(2)B-DNA damage complex formation in vivo, but instead through double-stranded DNA binding UvrCII may become concentrated at genomic areas and therefore may facilitate nucleotide excision repair
PMID: 11056168
ISSN: 0021-9258
CID: 21266
Both (+/-)syn- and (+/-)anti-7,12-dimethylbenz[a]anthracene-3,4-diol-1,2-epoxides initiate tumors in mouse skin that possess -CAA- to -CTA- mutations at Codon 61 of c-H-ras
Tang MS; Vulimiri SV; Viaje A; Chen JX; Bilolikar DS; Morris RJ; Harvey RG; Slaga TJ; DiGiovanni J
We have determined the tumor-initiating activity of (+/-)syn- and (+/-)anti-7,12-dimethylbenz[a]anthracene-3,4-diol-1,2-epoxide (syn- and anti-DMBADE), the two metabolically formed bay-region diol epoxides of DMBA, and we have also analyzed mutations in the H-ras gene from tumors induced by these compounds. Using a two-stage, initiation-promotion protocol for tumorigenesis in mouse skin, we have found that both syn- and anti-DMBADE are active tumor initiators, and that the occurrence of papillomas is carcinogen dose dependent. All of the papillomas induced by syn-DMBADE (a total of 40 mice), 96% of those induced by anti-DMBADE (a total of 25 mice), and 94% of those induced by DMBA (a total of 16 mice) possessed a -CAA- to -CTA- mutation at codon 61 of H-ras. No mutations in codons 12 or 13 were detected in any tumor. Topical application of syn- and anti-DMBADE produced stable adducts in mouse epidermal DNA, most of which comigrated with stable DNA adducts formed after topical application of DMBA. Further analysis of the data showed that levels of the major syn- and anti-DMBADE-deoxyadenosine adducts formed after topical application of DMBA are sufficient to account for the tumor-initiating activity of this carcinogen on mouse skin. Previously, we showed that both the syn- and anti-DMBADE bind to the adenine (A182) at codon 61 of H-ras. Collectively, these results indicate that the adenine adducts induced by both bay-region diol epoxides of DMBA lead to the mutation at codon 61 of H-ras and, consequently, initiate tumorigenesis in mouse skin
PMID: 11059761
ISSN: 0008-5472
CID: 39526