Searched for: in-biosketch:yes
person:neubet01
Cytoplasmic, full length and novel cleaved variant, TBLR1 reduces apoptosis in prostate cancer under androgen deprivation
Daniels, Garrett; Zhang, Xinmin; Zhong, Xuelin; Santiago, Larion; Wang, Ling Hang; Wu, Xinyu; Zhang, Jack Y; Liang, Fengxia; Li, Xin; Neubert, Thomas A; Steinke, Laurey; Shen, Ying; Basch, Ross; Schneider, Robert; Levy, David E; Lee, Peng
TBLR1/TBL1XR1, a core component of the nuclear receptor corepressor (NCoR) complex critical for the regulation of multiple nuclear receptors, is a transcriptional coactivator of androgen receptor (AR) and functions as a tumor suppressor when expressed in the nucleus in prostate. Subcellular localization of a protein is critical for its function, and although TBLR1, as a transcriptional cofactor, has been primarily viewed as a nuclear protein, many cells also express variable levels of cytoplasmic TBLR1 and its cytoplasmic specific functions have not been studied. Prostate cancer (PCa) cells express moderately higher level of cytoplasmic TBLR1 compared to benign prostate cells. When comparing androgen-dependent (AD) to androgen-independent (AI) PCa, AI cells contain very high levels of TBLR1 cytoplasmic expression and low levels of nuclear expression. Overexpression of cytoplasmic TBLR1 in AD cells inhibits apoptosis induced by androgen deprivation therapy, either in an androgen free condition or in the presence of bicalutamide. Additionally, we identified a cytoplasmic specific isoform of TBLR1 (cvTBLR1) approximately 5 kDa lower in molecular weight, that is expressed at higher levels in AI PCa cells. By immunoprecipitation, we purified cvTBLR1 and using mass spectrometry analysis combined with N-terminal TMPP labeling and Edman degradation, we identified the cleavage site of cvTBLR1 at amino acid 89, truncating the first 88 amino acids of the N-terminus of the full length protein. Functionally, cvTBLR1 expressed in the cytoplasm reduced apoptosis in PCa cells and promoted growth, migration, and invasion. Finally, we identified a nuclear export signal sequence for TBLR1 cellular localization by deletion and site-directed mutagenesis. The roles of TBLR1 and cvTBLR1 provide novel insights into the mechanism of castration resistance and new strategies for PCa therapy.
PMCID:5129953
PMID: 27127173
ISSN: 1949-2553
CID: 2092672
Endothelium-independent primitive myxoid vascularization creates invertebrate-like channels to maintain blood supply in optic gliomas [Meeting Abstract]
Snuderl, M; Zhang, G; Wu, P; Jennings, T; Shroff, S; Ortenzi, V; Jain, R; Cohen, B; Reidy, J; Dushay, M; Wisoff, J; Harter, D; Karajannis, M; Fenyo, D; Neubert, T; Zagzag, D
INTRODUCTION: Optic gliomas are classified as pilocytic astrocytoma (PA) or pilomyxoid astrocytoma (PMXA). Abundant bluish chondroid myxoid matrix is characteristic of PMXA but not PA. We sought to investigate the molecular composition of myxoid matrix and its biologic role in angiogenesis of optic gliomas. We reviewed clinical and pathological data on a cohort of 120 patients with optic glioma diagnosed at NYU Langone Medical Center from 1996 to 2014. We analyzed microvascular density (MVD), perfusion, hypoxia and proliferation by immunohistochemistry and ultrastructural features by electron microscopy. To identify the composition of the myxoid matrix in PMXA we performed liquid chromatography-mass spectrometry (LC-MS) without sample fractionation quantified using peptide spectral counts. PMXA showed significantly lower MVD by CD34 (8.1 vs 14.5, p-value < 0.002) and Erg (7 vs. 13.6, p-value 0.003) than PA, however GLUT-1 showed equal perfusion. Electron microscopy showed that PMXA contain both regular blood vessels with endothelial lining and channels completely lacking endothelial and smooth muscle cells. LC-MS stratified optic gliomas into three distinct groups. We identified 5389 proteins of which 188 were differentially expressed in the three groups (p<0.05, Benjamini-Hochberg adjustment). Between PA and PMXA, we found that most of differentially expressed proteins (146/188) displayed a positive fold change (increasing in PMXA relative to PA), and a minority (42/188) showed a negative fold change. The most abundant extracellular matrix proteins were a chondroitin sulfate proteoglycan versican (VCAN 3.7-fold increase Q=0.000463) and its paralog vertebrate Hyaluronan And Proteoglycan Link Protein 1 (HAPLN1, 22-fold increase from the PA to the PMXA group Q=4.60x10-7). Optic gliomas can develop endothelium-independent channels reminiscent of those in invertebrates to maintain blood supply. The myxoid matrix is composed of VCAN and its linking paralog HAPLN1. Targeting the myxoid matrix may provide novel avenues for therapy of optic gliom
EMBASE:622711609
ISSN: 1554-6578
CID: 3188352
Two FGF Receptor Kinase Molecules Act in Concert to Recruit and Transphosphorylate Phospholipase C gamma (vol 16, pg 98, 2016) [Correction]
Huang, Zhifeng; Marsiglia, William M; Roy, Upal Basu; Rahimi, Nader; Ilghari, Dariush; Wang, Huiyan; Chen, Huaibin; Gai, Weiming; Blais, Steven; Neubert, Thomas A; Mansukhani, Alka; Traaseth, Nathaniel J; Li, Xiaokun; Mohammadi, Moosa
ISI:000372325400015
ISSN: 1097-4164
CID: 2716662
Sorbs1 and -2 Interact with CrkL and Are Required for Acetylcholine Receptor Cluster Formation
Hallock, Peter T; Chin, Sherry; Blais, Steven; Neubert, Thomas A; Glass, David J
Crk and CrkL are noncatalytic adaptor proteins necessary for the formation of neuromuscular synapses which function downstream of muscle-specific kinase (MuSK), a receptor tyrosine kinase expressed in skeletal muscle, and the MuSK binding protein Dok-7. How Crk/CrkL regulate neuromuscular endplate formation is not known. To better understand the roles of Crk/CrkL, we identified CrkL binding proteins using mass spectrometry and have identified Sorbs1 and Sorbs2 as two functionally redundant proteins that associate with the initiating MuSK/Dok-7/Crk/CrkL complex, regulate acetylcholine receptor (AChR) clustering in vitro, and are localized at synapses in vivo.
PMCID:4719301
PMID: 26527617
ISSN: 1098-5549
CID: 1900302
Two FGF Receptor Kinase Molecules Act in Concert to Recruit and Transphosphorylate Phospholipase Cgamma
Huang, Zhifeng; Marsiglia, William M; Basu Roy, Upal; Rahimi, Nader; Ilghari, Dariush; Wang, Huiyan; Chen, Huaibin; Gai, Weiming; Blais, Steven; Neubert, Thomas A; Mansukhani, Alka; Traaseth, Nathaniel J; Li, Xiaokun; Mohammadi, Moosa
The molecular basis by which receptor tyrosine kinases (RTKs) recruit and phosphorylate Src Homology 2 (SH2) domain-containing substrates has remained elusive. We used X-ray crystallography, NMR spectroscopy, and cell-based assays to demonstrate that recruitment and phosphorylation of Phospholipase Cgamma (PLCgamma), a prototypical SH2 containing substrate, by FGF receptors (FGFR) entails formation of an allosteric 2:1 FGFR-PLCgamma complex. We show that the engagement of pTyr-binding pocket of the cSH2 domain of PLCgamma by the phosphorylated tail of an FGFR kinase induces a conformational change at the region past the cSH2 core domain encompassing Tyr-771 and Tyr-783 to facilitate the binding/phosphorylation of these tyrosines by another FGFR kinase in trans. Our data overturn the current paradigm that recruitment and phosphorylation of substrates are carried out by the same RTK monomer in cis and disclose an obligatory role for receptor dimerization in substrate phosphorylation in addition to its canonical role in kinase activation.
PMCID:4838190
PMID: 26687682
ISSN: 1097-4164
CID: 1884102
BONLAC: A Combinatorial Proteomic Technique to Measure Stimulus-induced Translational Profiles in Brain Slices
Bowling, Heather; Bhattacharya, Aditi; Zhang, Guoan; Lebowitz, Joseph Z; Alam, Danyal; Smith, Peter T; Kirshenbaum, Kent; Neubert, Thomas A; Vogel, Christine; Chao, Moses V; Klann, Eric
Stimulus-triggered protein synthesis is critical for brain health and function. However, due to technical hurdles, de novo neuronal translation is predominantly studied in cultured cells, whereas electrophysiological and circuit analyses often are performed in brain slices. The different properties of these two experimental systems create an information gap about stimulus-induced alterations in the expression of new proteins in mature circuits. To address this, we adapted two existing techniques, BONCAT and SILAC, to a combined proteomic technique, BONLAC, for use in acute adult hippocampal slices. Using BDNF-induced protein synthesis as a proof of concept, we found alterations in expression of proteins involved in neurotransmission, trafficking, and cation binding that differed from those found in a similar screen in cultured neurons. Our results indicate important differences between cultured neurons and slices, and suggest that BONLAC could be used to dissect proteomic changes underlying synaptic events in adult circuits.
PMCID:4584208
PMID: 26205778
ISSN: 1873-7064
CID: 1684102
In vivo Differential Brain Clearance and Catabolism of Monomeric and Oligomeric Alzheimer's Abeta protein
McIntee, Farron L; Giannoni, Patrizia; Blais, Steven; Sommer, George; Neubert, Thomas A; Rostagno, Agueda; Ghiso, Jorge
Amyloid beta (Abeta) is the major constituent of the brain deposits found in parenchymal plaques and cerebral blood vessels of patients with Alzheimer's disease (AD). Several lines of investigation support the notion that synaptic pathology, one of the strongest correlates to cognitive impairment, is related to the progressive accumulation of neurotoxic Abeta oligomers. Since the process of oligomerization/fibrillization is concentration-dependent, it is highly reliant on the homeostatic mechanisms that regulate the steady state levels of Abeta influencing the delicate balance between rate of synthesis, dynamics of aggregation, and clearance kinetics. Emerging new data suggest that reduced Abeta clearance, particularly in the aging brain, plays a critical role in the process of amyloid formation and AD pathogenesis. Using well-defined monomeric and low molecular mass oligomeric Abeta1-40 species stereotaxically injected into the brain of C57BL/6 wild-type mice in combination with biochemical and mass spectrometric analyses in CSF, our data clearly demonstrate that Abeta physiologic removal is extremely fast and involves local proteolytic degradation leading to the generation of heterogeneous C-terminally cleaved proteolytic products, while providing clear indication of the detrimental role of oligomerization for brain Abeta efflux. Immunofluorescence confocal microscopy studies provide insight into the cellular pathways involved in the brain removal and cellular uptake of Abeta. The findings indicate that clearance from brain interstitial fluid follows local and systemic paths and that in addition to the blood-brain barrier, local enzymatic degradation and the bulk flow transport through the choroid plexus into the CSF play significant roles. Our studies highlight the diverse factors influencing brain clearance and the participation of various routes of elimination opening up new research opportunities for the understanding of altered mechanisms triggering AD pathology and for the potential design of combined therapeutic strategies.
PMCID:5037193
PMID: 27729857
ISSN: 1663-4365
CID: 2275452
Ubiquitination role in TCR signaling and costimulation via GITR [Meeting Abstract]
Muller, J; Zhang, G; Silva, HM; Neubert, T; Dustin, M
ISI:000383610402794
ISSN: 1521-4141
CID: 2281752
Protein Kinase C-theta and vimentin modulate multiple facets of Regulatory T-cell function [Meeting Abstract]
McDonald-Hyman, Cameron; Thangavelu, Govindarajan; Saha, Asim; Muller, James; Zhang, Guoan; Kumari, Sudha; Koehn, Brent H; Mitchell, Jason S; Fife, Brian T; Serody, Jonathan S; Osborn, Mark J; Hippen, Keli L; Kelekar, Ameeta; Munn, David H; Altman, Amnon; Neubert, Thomas; Dustin, Michael L; Blazar, Bruce R
ISI:000380288303287
ISSN: 1550-6606
CID: 2220252
Edaravone leads to proteome changes indicative of neuronal cell protection in response to oxidative stress
Jami, Mohammad-Saeid; Salehi-Najafabadi, Zahra; Ahmadinejad, Fereshteh; Hoedt, Esthelle; Chaleshtori, Morteza Hashemzadeh; Neubert, Thomas A; Larsen, Jan Petter; Moller, Simon Geir
Neuronal cell death, in neurodegenerative disorders, is mediated through a spectrum of biological processes. Excessive amounts of free radicals, such as reactive oxygen species (ROS), has detrimental effects on neurons leading to cell damage via peroxidation of unsaturated fatty acids in the cell membrane. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used for neurological recovery in several countries, including Japan and China, and it has been suggested that Edaravone may have cytoprotective effects in neurodegeneration. Edaravone protects nerve cells in the brain by reducing ROS and inhibiting apoptosis. To gain further insight into the cytoprotective effects of Edaravone against oxidative stress condition we have performed comparative two-dimensional gel electrophoresis (2DE)-based proteomic analyses on SH-SY5Y neuroblastoma cells exposed to oxidative stress and in combination with Edaravone. We showed that Edaravone can reverse the cytotoxic effects of H2O2 through its specific mechanism. We observed that oxidative stress changes metabolic pathways and cytoskeletal integrity. Edaravone seems to reverse the H2O2-mediated effects at both the cellular and protein level via induction of Peroxiredoxin-2.
PMCID:4675627
PMID: 26232623
ISSN: 1872-9754
CID: 1698762