Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:poirij03

Total Results:

103


Fc-Mediated Anomalous Biodistribution of Therapeutic Antibodies in Immunodeficient Mouse Models

Sharma, Sai Kiran; Chow, Andrew; Monette, Sebastien; Vivier, Delphine; Pourat, Jacob; Edwards, Kimberly J; Dilling, Thomas R; Abdel-Atti, Dalya; Zeglis, Brian M; Poirier, John T; Lewis, Jason S
A critical benchmark in the development of antibody-based therapeutics is demonstration of efficacy in preclinical mouse models of human disease, many of which rely on immunodeficient mice. However, relatively little is known about how the biology of various immunodeficient strains impacts the in vivo fate of these drugs. Here we used immunoPET radiotracers prepared from humanized, chimeric, and murine mAbs against four therapeutic oncologic targets to interrogate their biodistribution in four different strains of immunodeficient mice bearing lung, prostate, and ovarian cancer xenografts. The immunodeficiency status of the mouse host as well as both the biological origin and glycosylation of the antibody contributed significantly to the anomalous biodistribution of therapeutic monoclonal antibodies in an Fc receptor-dependent manner. These findings may have important implications for the preclinical evaluation of Fc-containing therapeutics and highlight a clear need for biodistribution studies in the early stages of antibody drug development.Significance: Fc/FcγR-mediated immunobiology of the experimental host is a key determinant to preclinical in vivo tumor targeting and efficacy of therapeutic antibodies. Cancer Res; 78(7); 1820-32. ©2018 AACR.
PMCID:5882577
PMID: 29363548
ISSN: 1538-7445
CID: 3958372

Target engagement imaging of PARP inhibitors in small-cell lung cancer

Carney, Brandon; Kossatz, Susanne; Lok, Benjamin H; Schneeberger, Valentina; Gangangari, Kishore K; Pillarsetty, Naga Vara Kishore; Weber, Wolfgang A; Rudin, Charles M; Poirier, John T; Reiner, Thomas
Insufficient chemotherapy response and rapid disease progression remain concerns for small-cell lung cancer (SCLC). Oncologists rely on serial CT scanning to guide treatment decisions, but this cannot assess in vivo target engagement of therapeutic agents. Biomarker assessments in biopsy material do not assess contemporaneous target expression, intratumoral drug exposure, or drug-target engagement. Here, we report the use of PARP1/2-targeted imaging to measure target engagement of PARP inhibitors in vivo. Using a panel of clinical PARP inhibitors, we show that PARP imaging can quantify target engagement of chemically diverse small molecule inhibitors in vitro and in vivo. We measure PARP1/2 inhibition over time to calculate effective doses for individual drugs. Using patient-derived xenografts, we demonstrate that different therapeutics achieve similar integrated inhibition efficiencies under different dosing regimens. This imaging approach to non-invasive, quantitative assessment of dynamic intratumoral target inhibition may improve patient care through real-time monitoring of drug delivery.
PMCID:5766608
PMID: 29330466
ISSN: 2041-1723
CID: 3958362

Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis

Romero, Rodrigo; Sayin, Volkan I; Davidson, Shawn M; Bauer, Matthew R; Singh, Simranjit X; LeBoeuf, Sarah E; Karakousi, Triantafyllia R; Ellis, Donald C; Bhutkar, Arjun; Sanchez-Rivera, Francisco J; Subbaraj, Lakshmipriya; Martinez, Britney; Bronson, Roderick T; Prigge, Justin R; Schmidt, Edward E; Thomas, Craig J; Goparaju, Chandra; Davies, Angela; Dolgalev, Igor; Heguy, Adriana; Allaj, Viola; Poirier, John T; Moreira, Andre L; Rudin, Charles M; Pass, Harvey I; Vander Heiden, Matthew G; Jacks, Tyler; Papagiannakopoulos, Thales
Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein. One approach to addressing this challenge is to define mutations that frequently co-occur with those in KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function mutations in the KEAP1 gene encoding Kelch-like ECH-associated protein 1 (refs. 2, 3, 4), a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR-Cas9-based approach in a mouse model of KRAS-driven LUAD, we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyperactivates NRF2 and promotes KRAS-driven LUAD in mice. Through a combination of CRISPR-Cas9-based genetic screening and metabolomic analyses, we show that Keap1- or Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for stratification of human patients with lung cancer harboring KRAS/KEAP1- or KRAS/NRF2-mutant lung tumors as likely to respond to glutaminase inhibition.
PMCID:5677540
PMID: 28967920
ISSN: 1546-170x
CID: 2720332

Unravelling the biology of SCLC: implications for therapy

Sabari, Joshua K; Lok, Benjamin H; Laird, James H; Poirier, John T; Rudin, Charles M
Small-cell lung cancer (SCLC) is an aggressive malignancy associated with a poor prognosis. First-line treatment has remained unchanged for decades, and a paucity of effective treatment options exists for recurrent disease. Nonetheless, advances in our understanding of SCLC biology have led to the development of novel experimental therapies. Poly [ADP-ribose] polymerase (PARP) inhibitors have shown promise in preclinical models, and are under clinical investigation in combination with cytotoxic therapies and inhibitors of cell-cycle checkpoints.Preclinical data indicate that targeting of histone-lysine N-methyltransferase EZH2, a regulator of chromatin remodelling implicated in acquired therapeutic resistance, might augment and prolong chemotherapy responses. High expression of the inhibitory Notch ligand Delta-like protein 3 (DLL3) in most SCLCs has been linked to expression of Achaete-scute homologue 1 (ASCL1; also known as ASH-1), a key transcription factor driving SCLC oncogenesis; encouraging preclinical and clinical activity has been demonstrated for an anti-DLL3-antibody-drug conjugate. The immune microenvironment of SCLC seems to be distinct from that of other solid tumours, with few tumour-infiltrating lymphocytes and low levels of the immune-checkpoint protein programmed cell death 1 ligand 1 (PD-L1). Nonetheless, immunotherapy with immune-checkpoint inhibitors holds promise for patients with this disease, independent of PD-L1 status. Herein, we review the progress made in uncovering aspects of the biology of SCLC and its microenvironment that are defining new therapeutic strategies and offering renewed hope for patients.
PMCID:5843484
PMID: 28534531
ISSN: 1759-4782
CID: 3014472

Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus

Miles, Linde A; Burga, Laura N; Gardner, Eric E; Bostina, Mihnea; Poirier, John T; Rudin, Charles M
Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. It has shown promise as a cancer therapeutic in preclinical studies and early-phase clinical trials. Here, we have identified anthrax toxin receptor 1 (ANTXR1) as the receptor for SVV using genome-wide loss-of-function screens. ANTXR1 is necessary for permissivity in vitro and in vivo. However, robust SVV replication requires an additional innate immune defect. We found that SVV interacts directly and specifically with ANTXR1, that this interaction is required for SVV binding to permissive cells, and that ANTXR1 expression is necessary and sufficient for infection in cell lines with decreased expression of antiviral IFN genes at baseline. Finally, we identified the region of the SVV capsid that is responsible for receptor recognition using cryoelectron microscopy of the SVV-ANTXR1-Fc complex. These studies identify ANTXR1, a class of receptor that is shared by a mammalian virus and a bacterial toxin, as the cellular receptor for SVV.
PMCID:5531414
PMID: 28650343
ISSN: 1558-8238
CID: 3958342

Combined Inhibition of NEDD8-Activating Enzyme and mTOR Suppresses NF2 Loss-Driven Tumorigenesis

Cooper, Jonathan; Xu, Qingwen; Zhou, Lu; Pavlovic, Milica; Ojeda, Virginia; Moulick, Kamalika; de Stanchina, Elisa; Poirier, John T; Zauderer, Marjorie; Rudin, Charles M; Karajannis, Matthias A; Hanemann, C Oliver; Giancotti, Filippo G
Inactivation of NF2/Merlin causes the autosomal-dominant cancer predisposition syndrome familial neurofibromatosis type 2 (NF2) and contributes to the development of malignant pleural mesothelioma (MPM). To develop a targeted therapy for NF2-mutant tumors, we have exploited the recent realization that Merlin loss drives tumorigenesis by activating the E3 ubiquitin ligase CRL4DCAF1, thereby inhibiting the Hippo pathway component Lats. Here, we show that MLN4924, a NEDD8-activating enzyme (NAE) inhibitor, suppresses CRL4DCAF1 and attenuates activation of YAP in NF2-mutant tumor cells. In addition, MLN4924 sensitizes MPM to traditional chemotherapy, presumably as a result of collateral inhibition of cullin-RING ubiquitin ligases (CRL) involved in DNA repair. However, even in combination with chemotherapy, MLN4924 does not exhibit significant preclinical activity. Further analysis revealed that depletion of DCAF1 or treatment with MLN4924 does not affect mTOR hyperactivation in NF2-mutant tumor cells, suggesting that loss of Merlin activates mTOR independently of CRL4DCAF1 Intriguingly, combining MLN4924 with the mTOR/PI3K inhibitor GDC-0980 suppresses the growth of NF2-mutant tumor cells in vitro as well as in mouse and patient-derived xenografts. These results provide preclinical rationale for the use of NAE inhibitors in combination with mTOR/PI3K inhibitors in NF2-mutant tumors. Mol Cancer Ther; 16(8); 1693-704. ©2017 AACR.
PMCID:5929164
PMID: 28468780
ISSN: 1538-8514
CID: 3177482

Noninvasive Interrogation of DLL3 Expression in Metastatic Small Cell Lung Cancer

Sharma, Sai Kiran; Pourat, Jacob; Abdel-Atti, Dalya; Carlin, Sean D; Piersigilli, Alessandra; Bankovich, Alexander J; Gardner, Eric E; Hamdy, Omar; Isse, Kumiko; Bheddah, Sheila; Sandoval, Joseph; Cunanan, Kristen M; Johansen, Eric B; Allaj, Viola; Sisodiya, Vikram; Liu, David; Zeglis, Brian M; Rudin, Charles M; Dylla, Scott J; Poirier, John T; Lewis, Jason S
The Notch ligand DLL3 has emerged as a novel therapeutic target expressed in small cell lung cancer (SCLC) and high-grade neuroendocrine carcinomas. Rovalpituzumab teserine (Rova-T; SC16LD6.5) is a first-in-class DLL3-targeted antibody-drug conjugate with encouraging initial safety and efficacy profiles in SCLC in the clinic. Here we demonstrate that tumor expression of DLL3, although orders of magnitude lower in surface protein expression than typical oncology targets of immunoPET, can serve as an imaging biomarker for SCLC. We developed 89Zr-labeled SC16 antibody as a companion diagnostic agent to facilitate selection of patients for treatment with Rova-T based on a noninvasive interrogation of the in vivo status of DLL3 expression using PET imaging. Despite low cell-surface abundance of DLL3, immunoPET imaging with 89Zr-labeled SC16 antibody enabled delineation of subcutaneous and orthotopic SCLC tumor xenografts as well as distant organ metastases with high sensitivity. Uptake of the radiotracer in tumors was concordant with levels of DLL3 expression and, most notably, DLL3 immunoPET yielded rank-order correlation for response to SC16LD6.5 therapy in SCLC patient-derived xenograft models. Cancer Res; 77(14); 3931-41. ©2017 AACR.
PMCID:5534176
PMID: 28487384
ISSN: 1538-7445
CID: 3958332

Histone Code Aberrancies in Small Cell Lung Cancer [Comment]

Gardner, Eric E; Poirier, John T; Rudin, Charles M
PMID: 28343540
ISSN: 1556-1380
CID: 3958322

Chemosensitive Relapse in Small Cell Lung Cancer Proceeds through an EZH2-SLFN11 Axis

Gardner, Eric E; Lok, Benjamin H; Schneeberger, Valentina E; Desmeules, Patrice; Miles, Linde A; Arnold, Paige K; Ni, Andy; Khodos, Inna; de Stanchina, Elisa; Nguyen, Thuyen; Sage, Julien; Campbell, John E; Ribich, Scott; Rekhtman, Natasha; Dowlati, Afshin; Massion, Pierre P; Rudin, Charles M; Poirier, John T
Small cell lung cancer is initially highly responsive to cisplatin and etoposide but in almost every case becomes rapidly chemoresistant, leading to death within 1 year. We modeled acquired chemoresistance in vivo using a series of patient-derived xenografts to generate paired chemosensitive and chemoresistant cancers. Multiple chemoresistant models demonstrated suppression of SLFN11, a factor implicated in DNA-damage repair deficiency. In vivo silencing of SLFN11 was associated with marked deposition of H3K27me3, a histone modification placed by EZH2, within the gene body of SLFN11, inducing local chromatin condensation and gene silencing. Inclusion of an EZH2 inhibitor with standard cytotoxic therapies prevented emergence of acquired resistance and augmented chemotherapeutic efficacy in both chemosensitive and chemoresistant models of small cell lung cancer.
PMID: 28196596
ISSN: 1878-3686
CID: 3958312

Small-cell lung cancer in 2016: Shining light on novel targets and therapies

Rudin, Charles M; Poirier, John T
PMID: 27958293
ISSN: 1759-4782
CID: 3958302