Searched for: in-biosketch:yes
person:reithm01
Regulation of the dopamine transporter
Schmitt, Kyle C; Reith, Maarten E A
Dopaminergic signaling in the brain is primarily modulated by dopamine transporters (DATs), which actively translocate extraneuronal dopamine back into dopaminergic neurons. Transporter proteins are highly dynamic, continuously trafficking between plasmalemmal and endosomal membranes. Changes in DAT membrane trafficking kinetics can rapidly regulate dopaminergic tone by altering the number of transporters present at the cell surface. Various psychostimulant DAT ligands-acting either as amphetamine-like substrates or cocaine-like nontranslocated inhibitors-affect transporter trafficking, triggering rapid insertion or removal of plasmalemmal DATs. In this review, we focus on the effects of psychostimulants of addiction (particularly d-methamphetamine and cocaine) on DAT regulation and membrane trafficking, with an emphasis on how these drugs may influence intracellular signaling cascades and transporter-associated scaffolding proteins to affect DAT regulation. In addition, we consider involvement of presynaptic receptors for dopamine and other ligands in DAT regulation. Finally, we discuss possible implications of transporter regulation to the putative toxicity of several substituted amphetamine derivatives commonly used as recreational drugs, as well as to the design of therapeutics for cocaine addiction
PMID: 20201860
ISSN: 0077-8923
CID: 107930
Interaction of cocaine-, benztropine-, and GBR12909-like compounds with wildtype and mutant human dopamine transporters: molecular features that differentially determine antagonist binding properties. (vol 107, pg 928, 2008) [Correction]
Schmitt, KC; Zhen, J; Kharkar, P; Mishra, M; Chen, N; Dutta, AK; Reith, MEA
ISI:000281828200027
ISSN: 0022-3042
CID: 2341162
Homozygous Loss-of-Function Mutations in the Dopamine Transporter (DAT), SLC6A3 Cause Infantile Parkinsonism-Dystonia (IPD) [Meeting Abstract]
Kurian, M; Zhen, J; Cheng, SY; Li, Y; Mordekar, S; Jardine, P; Morgan, NV; Meyer, E; Tee, L; Pasha, S; Wassmer, E; Assmann, B; Heales, SJR; Gissen, P; Reith, MEA; Maher, ER
ISI:000270705500006
ISSN: 0022-2593
CID: 105632
Synthesis and biological characterization of (3R,4R)-4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperid in-3-ol and its stereoisomers for activity toward monoamine transporters
Kharkar, Prashant S; Batman, Angela M; Zhen, Juan; Beardsley, Patrick M; Reith, Maarten E A; Dutta, Aloke K
A novel series of optically active molecules based on a 4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperidin-3-ol template were developed. Depending on stereochemistry, the compounds exhibit various degrees of affinity for three dopamine, serotonin, and norepinephrine transporters. These molecules have the potential for treating several neurological disorders such as drug abuse, depression, and attention deficit hyperactivity disorder.Herein we describe the synthesis and biological evaluation of a series of asymmetric 4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperidin-3-ol- based dihydroxy compounds in which the hydroxy groups are located on both the piperidine ring and the N-phenylethyl side chain. In vitro uptake inhibition data of these molecules indicate high affinity for the dopamine transporter (DAT) in addition to moderate to high affinity for the norepinephrine transporter (NET). Interestingly, compounds 9 b and 9 d exhibit affinities for all three monoamine transporters, with highest potency at DAT and NET, and moderate potency at the serotonin transporter (SERT) (K(i): 2.29, 78.4, and 155 nM for 9 b and 1.55, 14.1, and 259 nM for 9 d, respectively). Selected compounds 9 a, 9 d, and 9 d' were tested for their locomotor activity effects in mice and for their ability to occasion the cocaine-discriminative stimulus in rats. These test compounds generally exhibit a much longer duration of action than cocaine for elevating locomotor activity, and completely generalize the cocaine-discriminative stimulus in a dose-dependent manner
PMCID:3517155
PMID: 19449323
ISSN: 1860-7187
CID: 120624
Investigation of various N-heterocyclic substituted piperazine versions of 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-na phthalen-2-ol: effect on affinity and selectivity for dopamine D3 receptor
Brown, Dennis A; Mishra, Manoj; Zhang, Suhong; Biswas, Swati; Parrington, Ingrid; Antonio, Tamara; Reith, Maarten E A; Dutta, Aloke K
Here we report on the design and synthesis of several heterocyclic analogues belonging to the 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-na phthalen-2-ol series of molecules. Compounds were subjected to [(3)H]spiperone binding assays, carried out with HEK-293 cells expressing either D2 or D3 dopamine receptors, in order to evaluate their inhibition constant (K(i)) at these receptors. Results indicate that N-substitution on the piperazine ring can accommodate various substituted indole rings. The results also show that in order to maintain high affinity and selectivity for the D3 receptor the heterocyclic ring does not need to be connected directly to the piperazine ring as the majority of compounds included here are linked either via an amide or a methylene linker to the heterocyclic moiety. The enantiomers of the most potent racemic compound 10e exhibited differential activity with (-)-10e (K(i); D2=47.5 nM, D3=0.57 nM) displaying higher affinity at both D2 and D3 receptors compared to its enantiomer (+)-10e (K(i); D2=113 nM, D3=3.73 nM). Additionally, compound (-)-10e was more potent and selective for the D3 receptor compared to either 7-OH-DPAT or 5-OH-DPAT. Among the bioisosteric derivatives, the indazole derivative 10g and benzo[b]thiophene derivative 10i exhibited the highest affinity for D2 and D3 receptors. In the functional GTPgammaS binding study, one of the lead molecules, (-)-15, exhibited potent agonist activity at both D2 and D3 receptors with preferential affinity at D3
PMCID:2701157
PMID: 19427222
ISSN: 1464-3391
CID: 120625
Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia
Kurian, Manju A; Zhen, Juan; Cheng, Shu-Yuan; Li, Yan; Mordekar, Santosh R; Jardine, Philip; Morgan, Neil V; Meyer, Esther; Tee, Louise; Pasha, Shanaz; Wassmer, Evangeline; Heales, Simon J R; Gissen, Paul; Reith, Maarten E A; Maher, Eamonn R
Genetic variants of the SLC6A3 gene that encodes the human dopamine transporter (DAT) have been linked to a variety of neuropsychiatric disorders, particularly attention deficit hyperactivity disorder. In addition, the homozygous Slc6a3 knockout mouse displays a hyperactivity phenotype. Here, we analyzed 2 unrelated consanguineous families with infantile parkinsonism-dystonia (IPD) syndrome and identified homozygous missense SLC6A3 mutations (p.L368Q and p.P395L) in both families. Functional studies demonstrated that both mutations were loss-of-function mutations that severely reduced levels of mature (85-kDa) DAT while having a differential effect on the apparent binding affinity of dopamine. Thus, in humans, loss-of-function SLC6A3 mutations that impair DAT-mediated dopamine transport activity are associated with an early-onset complex movement disorder. Identification of the molecular basis of IPD suggests SLC6A3 as a candidate susceptibility gene for other movement disorders associated with parkinsonism and/or dystonic features
PMCID:2689114
PMID: 19478460
ISSN: 1558-8238
CID: 120623
Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures
Zhou, Zheng; Zhen, Juan; Karpowich, Nathan K; Law, Christopher J; Reith, Maarten E A; Wang, Da-Neng
Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP) in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP
PMCID:2758934
PMID: 19430461
ISSN: 1545-9985
CID: 103150
Interaction of catechol and non-catechol substrates with externally or internally facing dopamine transporters
Liang, Ying-Jian; Zhen, Juan; Chen, Nianhang; Reith, Maarten E A
Our previous work suggested that collapsing the Na(+) gradient and membrane potential converts the dopamine (DA) transporter (DAT) to an inward-facing conformation with a different substrate binding profile. Here, DAT expressing human embryonic kidney 293 cells were permeabilized with digitonin, disrupting ion/voltage gradients and allowing passage of DAT substrates. The potency of p-tyramine and other non-catechols (d-amphetamine, beta-phenethylamine, MPP(+)) in inhibiting cocaine analog binding to DAT in digitonin-treated cells was markedly weakened to a level similar to that observed in cell-free membranes. In contrast, the potency of DA and another catechol, norepinephrine, was not significantly changed by the same treatment, whereas epinephrine showed only a modest reduction. These findings suggest that catechol substrates interact symmetrically with both sides of DAT and non-catechol substrates, favoring binding to outward-facing transporter. In the cocaine analog binding assay, the mutant W84L displayed enhanced intrinsic binding affinity for substrates in interacting with both outward- and inward-facing states; D313N showed wild-type-like symmetric binding; but D267L and E428Q showed an apparent improvement in the permeation pathway from the external face towards the substrate site. Thus, the structure of both substrate and transporter play a role in the sidedness and mode of interaction between them
PMCID:2696066
PMID: 19519772
ISSN: 1471-4159
CID: 100191
Structurally constrained hybrid derivatives containing octahydrobenzo[g or f]quinoline moieties for dopamine D2 and D3 receptors: binding characterization at D2/D3 receptors and elucidation of a pharmacophore model
Brown, Dennis A; Kharkar, Prashant S; Parrington, Ingrid; Reith, Maarten E A; Dutta, Aloke K
A series of structurally constrained analogues based on hybrid compounds containing octahydrobenzo[g or f]quinoline moieties were designed, synthesized, and characterized for their binding to dopamine D2 and D3 receptors expressed in HEK-293 cells. Among the newly developed constrained molecules, trans-octahydrobenzo[f]quinolin-7-ol (8) exhibited the highest affinity for D2 and D3 receptors, the (-)-isomer being the eutomer. Interestingly, this hybrid constrained version 8 showed significant affinity over the corresponding nonhybrid version 1 (representing a constrained version of the aminotetralin structure only) when assayed under same conditions (K(i) of 49.1 and 14.9 nM for 8 vs 380 and 96.0 nM for 1 at D2 and D3, respectively). Similar results were found with other lead hybrid compounds, indicating a contribution of the piperazine moiety in the observed enhanced affinity. On the basis of the data of new lead constrained derivatives and other lead hybrid derivatives developed by us, a unique pharmacophore model was proposed consisting of three pharmacophoric centers, two with aromatic/hydrophobic and one with cationic features
PMCID:2607046
PMID: 19053758
ISSN: 1520-4804
CID: 94432
Interaction of cocaine-, benztropine-, and GBR12909-like compounds with wild-type and mutant human dopamine transporters: molecular features that differentially determine antagonist-binding properties
Schmitt, Kyle C; Zhen, Juan; Kharkar, Prashant; Mishra, Manoj; Chen, Nianhang; Dutta, Aloke K; Reith, Maarten E A
The widely abused psychostimulant cocaine is thought to elicit its reinforcing effects primarily via inhibition of the neuronal dopamine transporter (DAT). However, not all DAT inhibitors share cocaine's behavioral profile, despite similar or greater affinity for the DAT. This may be due to differential molecular interactions with the DAT. Our previous work using transporter mutants with altered conformational equilibrium (W84L and D313N) indicated that benztropine and GBR12909 interact with the DAT in a different manner than cocaine. Here, we expand upon these previous findings, studying a number of structurally different DAT inhibitors for their ability to inhibit [(3)H]CFT binding to wild-type, W84L and D313N transporters. We systematically tested structural intermediates between cocaine and benztropine, structural hybrids of benztropine and GBR12909 and a number of other structurally heterologous inhibitors. Derivatives of the stimulant desoxypipradrol (2-benzhydrylpiperidine) exhibited a cocaine-like binding profile with respect to mutation, whereas compounds possessing the diphenylmethoxy moiety of benztropine and GBR12909 were dissimilar to cocaine-like compounds. In tests with specific isomers of cocaine and tropane analogues, compounds with 3alpha stereochemistry tended to exhibit benztropine-like binding, whereas those with 3beta stereochemistry were more cocaine-like. Our results point to the importance of specific molecular features--most notably the presence of a diphenylmethoxy moiety--in determining a compound's binding profile. This study furthers the concept of using DAT mutants to differentiate cocaine-like inhibitors from atypical inhibitors in vitro. Further studies of the molecular features that define inhibitor-transporter interaction could lead to the development of DAT inhibitors with differential clinical utility
PMCID:2728472
PMID: 18786172
ISSN: 1471-4159
CID: 92696