Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:scharh01

Total Results:

211


Preface

Scharfman, Helen E; Buckmaster, Paul S
PMID: 25371938
ISSN: 0065-2598
CID: 1341192

p75NTR, but Not proNGF, Is Upregulated Following Status Epilepticus in Mice

VonDran, Melissa W; LaFrancois, John; Padow, Victoria A; Friedman, Wilma J; Scharfman, Helen E; Milner, Teresa A; Hempstead, Barbara L
ProNGF and p75(NTR) are upregulated and induce cell death following status epilepticus (SE) in rats. However, less is known about the proneurotrophin response to SE in mice, a more genetically tractable species where mechanisms can be more readily dissected. We evaluated the temporal- and cell-specific induction of the proneurotrophins and their receptors, including p75(NTR), sortilin, and sorCS2, following mild SE induced with kainic acid (KA) or severe SE induced by pilocarpine. We found that mature NGF, p75(NTR), and proBDNF were upregulated following SE, while proNGF was not altered, indicating potential mechanistic differences between rats and mice. ProBDNF was localized to mossy fibers and microglia following SE. p75(NTR) was transiently induced primarily in axons and axon terminals following SE, as well as in neuron and astrocyte cell bodies. ProBDNF and p75(NTR) increased independently of cell death and their localization was different depending on the severity of SE. We also examined the expression of proneurotrophin co-receptors, sortilin and sorCS2. Following severe SE, sorCS2, but not sortilin, was elevated in neurons and astrocytes. These data indicate that important differences exist between rat and mouse in the proneurotrophin response following SE. Moreover, the proBDNF and p75(NTR) increase after seizures in the absence of significant cell death suggests that proneurotrophin signaling may play other roles following SE.
PMCID:4187006
PMID: 25290065
ISSN: 1759-0914
CID: 1299872

Epilepsy

Chapter by: Scharfman, HE
in: Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders by
pp. 263-261
ISBN: 9780123982803
CID: 1842392

Aquaporin-4 water channels and synaptic plasticity in the hippocampus

Scharfman, Helen E; Binder, Devin K
Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective role of AQP4 in synaptic plasticity and spatial memory, and underscore the growing appreciation of the role of glial cells in functions typically attributed to neurons. Implications for epilepsy are discussed because of the previous evidence that AQP4 influences seizures, and the role of synaptic plasticity in epileptogenesis.
PMCID:3783552
PMID: 23684954
ISSN: 0197-0186
CID: 626702

Authors' response to letter by A. Mazarati [Letter]

Brooks-Kayal, Amy R; Bath, Kevin G; Berg, Anne T; Galanopoulou, Aristea S; Holmes, Gregory L; Jensen, Frances E; Kanner, Andres M; O'Brien, Terence J; Whittemore, Vicky H; Winawer, Melodie R; Patel, Manisha; Scharfman, Helen E
PMID: 24304440
ISSN: 0013-9580
CID: 829792

Cutting through the complexity: the role of brain-derived neurotrophic factor in post-traumatic epilepsy (Commentary on Gill et al.) [Comment]

Scharfman, Helen E
PMCID:4083698
PMID: 24289826
ISSN: 0953-816x
CID: 829802

Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo

Duffy, Aine M; Schaner, Michael J; Chin, Jeannie; Scharfman, Helen E
Granule cells (GCs) of the dentate gyrus (DG) are considered to be quiescent-they rarely fire action potentials. In contrast, the other glutamatergic cell type in the DG, hilar mossy cells (MCs) often have a high level of spontaneous activity based on recordings in hippocampal slices. MCs project to GCs, so activity in MCs could play an important role in activating GCs. Therefore, we investigated whether MCs were active under basal conditions in vivo, using the immediate early gene c-fos as a tool. We hypothesized that MCs would exhibit c-fos expression even if rats were examined randomly, under normal housing conditions. Therefore, adult male rats were perfused shortly after removal from their home cage and transfer to the laboratory. Remarkably, most c-fos immunoreactivity (ir) was in the hilus, especially temporal hippocampus. C-fos-ir hilar cells co-expressed GluR2/3, suggesting that they were MCs. C-fos-ir MCs were robust even when the animal was habituated to the investigator and laboratory where they were euthanized. However, c-fos-ir in dorsal MCs was reduced under these circumstances, suggesting that ventral and dorsal MCs are functionally distinct. Interestingly, there was an inverse relationship between MC and GC layer c-fos expression, with little c-fos expression in the GC layer in ventral sections where MC expression was strong, and the opposite in dorsal hippocampus. The results support the hypothesis that a subset of hilar MCs are spontaneously active in vivo and provide other DG neurons with tonic depolarizing input. (c) 2013 Wiley Periodicals, Inc.
PMCID:3732572
PMID: 23640815
ISSN: 1050-9631
CID: 515922

Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy

Brooks-Kayal, Amy R; Bath, Kevin G; Berg, Anne T; Galanopoulou, Aristea S; Holmes, Gregory L; Jensen, Frances E; Kanner, Andres M; O'Brien, Terence J; Whittemore, Vicky H; Winawer, Melodie R; Patel, Manisha; Scharfman, Helen E
Many symptoms of neurologic or psychiatric illness--such as cognitive impairment, depression, anxiety, attention deficits, and migraine--occur more frequently in people with epilepsy than in the general population. These diverse comorbidities present an underappreciated problem for people with epilepsy and their caregivers because they decrease quality of life, complicate treatment, and increase mortality. In fact, it has been suggested that comorbidities can have a greater effect on quality of life in people with epilepsy than the seizures themselves. There is increasing recognition of the frequency and impact of cognitive and behavioral comorbidities of epilepsy, highlighted in the 2012 Institute of Medicine report on epilepsy. Comorbidities have also been acknowledged, as a National Institutes of Health (NIH) Benchmark area for research in epilepsy. However, relatively little progress has been made in developing new therapies directed specifically at comorbidities. On the other hand, there have been many advances in understanding underlying mechanisms. These advances have made it possible to identify novel targets for therapy and prevention. As part of the International League Against Epilepsy/American Epilepsy Society workshop on preclinical therapy development for epilepsy, our working group considered the current state of understanding related to terminology, models, and strategies for therapy development for the comorbidities of epilepsy. Herein we summarize our findings and suggest ways to accelerate development of new therapies. We also consider important issues to improve research including those related to methodology, nonpharmacologic therapies, biomarkers, and infrastructure.
PMCID:3924317
PMID: 23909853
ISSN: 0013-9580
CID: 829812

Introduction to 'steroid hormone actions in the CNS: The role of brain-derived neurotrophic factor (BDNF)'

Scharfman, H E; Kramer, E A; Luine, V; Srivastava, D P
PMCID:4096957
PMID: 23164677
ISSN: 0306-4522
CID: 210482

BDNF-estrogen interactions in hippocampal mossy fiber pathway: implications for normal brain function and disease

Harte-Hargrove, Lauren; Maclusky, Neil J; Scharfman, Helen E
The neurotrophin BDNF and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially-regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17beta-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17beta-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
PMCID:3628287
PMID: 23276673
ISSN: 0306-4522
CID: 210432