Searched for: in-biosketch:yes
person:sunt01
Allelic loss of p53 gene is associated with genesis and maintenance, but not invasion, of mouse carcinoma in situ of the bladder
Cheng, Jin; Huang, Hongying; Pak, Joanne; Shapiro, Ellen; Sun, Tung-Tien; Cordon-Cardo, Carlos; Waldman, Frederic M; Wu, Xue-Ru
Carcinoma in situ (CIS) of the bladder has recently been proposed to be a heterogeneous group of diseases with varied histogenesis and biological behavior. In this study, we describe the sequential steps of CIS development and progression in a transgenic mouse model expressing low levels of the SV40 large T antigen. We found that CIS in transgenic mice arose from urothelial dysplasia, that CIS could persist for an extended period of time without invasion, and that the majority of CIS eventually evolved into high-grade, superficial, papillary tumors before a small fraction of them advanced to invasion/metastasis. A genome-wide search of chromosomal imbalances by comparative genomic hybridization revealed that 9 of 11 (82%) of CIS had losses on chromosome 11. Southern blotting demonstrated the allelic loss of the p53 gene, which resides on mouse chromosome 11, in four comparative genomic hybridization-tested tumors and 10 of 11 (91%) additional CIS examined. Consistent with the reduced p53 gene dosage because of the allelic loss and the functional inactivation of p53 protein of the remaining allele by SV40T antigen, there was a dramatic decrease in CIS of Mdm-2, a major p53 target. In contrast, the level of p21, another p53 target, was largely unaltered, suggesting that p21 expression can be regulated by p53-independent mechanisms. These results delineate the early stages of bladder tumorigenesis and suggest that the loss of a p53-bearing chromosome is an early event in bladder tumorigenesis and is crucial for the genesis and the maintenance, but not the progression, of bladder CIS. On the basis of our current and previous transgenic studies, we have proposed an integrated pathway progression model of bladder cancer
PMID: 12517796
ISSN: 0008-5472
CID: 34168
72% sensitivity in identifying the urothelial origin of poorly differentiated carcinomas in fine needle aspiratiion biopsies using a panel of uroplakin Ia, Ib, II, III antibodies [Meeting Abstract]
Tong, GX; Sun, TT; Wieczorek, R; Yang, GCH
ISI:000180732500387
ISSN: 0023-6837
CID: 37150
Expression of uroplakins in nephrogenic adenoma: Immunohistochemical evidence supporting urothelial origin [Meeting Abstract]
Tong, GX; Melamed, J; Levine, P; Popiolek, DA; Sun, TT
ISI:000180732500800
ISSN: 0023-6837
CID: 37156
72% sensitivity in identifying the urothelial origin of poorly differentiated carcinomas in fine needle aspiratiion biopsies using a panel of uroplakin Ia, Ib, II, III antibodies [Meeting Abstract]
Tong, GX; Sun, TT; Wieczorek, R; Yang, GCH
ISI:000180720100386
ISSN: 0893-3952
CID: 38520
Expression of uroplakins in nephrogenic adenoma: Immunohistochemical evidence supporting urothelial origin [Meeting Abstract]
Tong, GX; Melamed, J; Levine, P; Popiolek, DA; Sun, TT
ISI:000180720100797
ISSN: 0893-3952
CID: 38527
Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum
Tu, Liyu; Sun, Tung-Tien; Kreibich, Gert
Much of the lower urinary tract, including the bladder, is lined by a stratified urothelium forming a highly differentiated, superficial umbrella cell layer. The apical plasma membrane as well as abundant cytoplasmic fusiform vesicles of the umbrella cells is covered by two-dimensional crystals that are formed by four membrane proteins named uroplakins (UPs) Ia, Ib, II, and III. UPs are synthesized on membrane-bound polysomes, and after several co- and posttranslational modifications they assemble into planar crystals in a post-Golgi vesicular compartment. Distension of the bladder may cause fusiform vesicles to fuse with the apical plasma membrane. We have investigated the early stages of uroplakin assembly by expressing the four uroplakins in 293T cells. Transfection experiments showed that, when expressed individually, only UPIb can exit from the endoplasmic reticulum (ER) and move to the plasma membrane, whereas UPII and UPIII reach the plasma membrane only when they form heterodimeric complexes with UPIa and UPIb, respectively. Heterodimer formation in the ER was confirmed by pulse-chase experiment followed by coimmunoprecipitation. Our results indicate that the initial building blocks for the assembly of crystalline uroplakin plaques are heterodimeric uroplakin complexes that form in the ER
PMCID:138628
PMID: 12475947
ISSN: 1059-1524
CID: 34613
Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability
Hu, Ping; Meyers, Susan; Liang, Feng-Xia; Deng, Fang-Ming; Kachar, Bechara; Zeidel, Mark L; Sun, Tung-Tien
Although water, small nonelectrolytes, and gases are freely permeable through most biological membranes, apical membranes of certain barrier epithelia exhibit extremely low permeabilities to these substances. The role of integral membrane proteins in this barrier function has been unclear. To study this problem, we have ablated the mouse gene encoding uroplakin III (UPIII), one of the major protein subunits in urothelial apical membranes, and measured the permeabilities of these membranes. Ablation of the UPIII gene greatly diminishes the amounts of uroplakins on the apical urothelial membrane (Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, Wu XR, Kachar B, and Sun TT. J Cell Biol 151: 961-972, 2000). Our results indicate that normal mouse urothelium exhibits high transepithelial resistance and low urea and water permeabilities. The UPIII-deficient urothelium exhibits a normal transepithelial resistance (normal 2,024 +/- 122, knockout 2,322 +/- 114 Omega. cm(2); P > 0.5). However, the UPIII-deficient apical membrane has a significantly elevated water permeability (normal 0.91 +/- 0.06, knockout 1.83 +/- 0.14 cm/s x 10(-5); P < 0.05). The urea permeability of the UPIII-deficient membrane also increased, although to a lesser extent (normal 2.22 +/- 0.24, knockout 2.93 +/- 0.31 cm/s x 10(-6); P = 0.12). These results indicate that reduced targeting of uroplakins to the apical membrane does not significantly alter the tight junctional barrier but does double the water permeability. We provide the first demonstration that integral membrane proteins contribute to the apical membrane permeability barrier function of urothelium
PMID: 12388410
ISSN: 1931-857x
CID: 39551
Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly
Deng, Fang-Ming; Liang, Feng-Xia; Tu, Liyu; Resing, Katheryn A; Hu, Ping; Supino, Mark; Hu, Chih-Chi Andrew; Zhou, Ge; Ding, Mingxiao; Kreibich, Gert; Sun, Tung-Tien
Urothelial plaques consist of four major uroplakins (Ia, Ib, II, and III) that form two-dimensional crystals covering the apical surface of urothelium, and provide unique opportunities for studying membrane protein assembly. Here, we describe a novel 35-kD urothelial plaque-associated glycoprotein that is closely related to uroplakin III: they have a similar overall type 1 transmembrane topology; their amino acid sequences are 34% identical; they share an extracellular juxtamembrane stretch of 19 amino acids; their exit from the ER requires their forming a heterodimer with uroplakin Ib, but not with any other uroplakins; and UPIII-knockout leads to p35 up-regulation, possibly as a compensatory mechanism. Interestingly, p35 contains a stretch of 80 amino acid residues homologous to a hypothetical human DNA mismatch repair enzyme-related protein. Human p35 gene is mapped to chromosome 7q11.23 near the telomeric duplicated region of Williams-Beuren syndrome, a developmental disorder affecting multiple organs including the urinary tract. These results indicate that p35 (uroplakin IIIb) is a urothelial differentiation product structurally and functionally related to uroplakin III, and that p35-UPIb interaction in the ER is an important early step in urothelial plaque assembly
PMCID:2173100
PMID: 12446744
ISSN: 0021-9525
CID: 33060
Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth
Cheng, Jin; Huang, Hongying; Zhang, Zhong-Ting; Shapiro, Ellen; Pellicer, Angel; Sun, Tung-Tien; Wu, Xue-Ru
Although urothelium is constantly bathed in high concentrations of epidermal growth factor (EGF) and most urothelial carcinomas overexpress EGF receptor (EGFr), relatively little is known about the role of EGFr signaling pathway in urothelial growth and transformation. In the present study, we used the uroplakin II gene promoter to drive the urothelial overexpression of EGFr in transgenic mice. Three transgenic lines were established, all expressing a higher level of the EGFr mRNA and protein in the urothelium than the nontransgenic controls. The overexpressed EGFr was functionally active because it was autophosphorylated, and its downstream mitogen-activated protein kinases were highly activated. Phenotypically, the urinary bladders of all transgenic lines developed simple urothelial hyperplasia that was strongly positive for proliferative cell nuclear antigen and weakly positive for bromodeoxyuridine incorporation. When coexpressed with the activated Ha-ras oncogene in double transgenic mice, EGFr had no apparent tumor-enhancing effects over the urothelial hyperplastic phenotype induced by Ha-ras oncogene. However, when coexpressed with the SV40 large T antigen, EGFr accelerated tumor growth and converted the carcinoma in situ of the SV40T mice into high-grade bladder carcinomas, without triggering tumor invasion. Our studies indicate that urothelial overexpression of EGFr can induce urothelial proliferation but not frank carcinoma formation. Our results also suggest that, whereas EGFr and Ha-ras, both of which act in the same signal transduction cascade, stimulated urothelial hyperplasia, they were not synergistic in urothelial tumorigenesis, and EGFr overexpression can cooperate with p53 and pRB dysfunction (as occurring in SV40T transgenic mice) to promote bladder tumor growth
PMID: 12124355
ISSN: 0008-5472
CID: 32471
Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis
Tsujimura, Akira; Koikawa, Yasuhiro; Salm, Sarah; Takao, Tetsuya; Coetzee, Sandra; Moscatelli, David; Shapiro, Ellen; Lepor, Herbert; Sun, Tung-Tien; Wilson, E Lynette
Stem cells are believed to regulate normal prostatic homeostasis and to play a role in the etiology of prostate cancer and benign prostatic hyperplasia. We show here that the proximal region of mouse prostatic ducts is enriched in a subpopulation of epithelial cells that exhibit three important attributes of epithelial stem cells: they are slow cycling, possess a high in vitro proliferative potential, and can reconstitute highly branched glandular ductal structures in collagen gels. We propose a model of prostatic homeostasis in which mouse prostatic epithelial stem cells are concentrated in the proximal region of prostatic ducts while the transit-amplifying cells occupy the distal region of the ducts. This model can account for many biological differences between cells of the proximal and distal regions, and has implications for prostatic disease formation
PMCID:2173539
PMID: 12082083
ISSN: 0021-9525
CID: 32485