Searched for: in-biosketch:yes
person:tenoeb01
Broadly protective murine monoclonal antibodies against influenza B virus target highly conserved neuraminidase epitopes
Wohlbold, Teddy John; Podolsky, Kira A; Chromikova, Veronika; Kirkpatrick, Ericka; Falconieri, Veronica; Meade, Philip; Amanat, Fatima; Tan, Jessica; tenOever, Benjamin R; Tan, Gene S; Subramaniam, Sriram; Palese, Peter; Krammer, Florian
A substantial proportion of influenza-related childhood deaths are due to infection with influenza B viruses, which co-circulate in the human population as two antigenically distinct lineages defined by the immunodominant receptor binding protein, haemagglutinin. While broadly cross-reactive, protective monoclonal antibodies against the haemagglutinin of influenza B viruses have been described, none targeting the neuraminidase, the second most abundant viral glycoprotein, have been reported. Here, we analyse a panel of five murine anti-neuraminidase monoclonal antibodies that demonstrate broad binding, neuraminidase inhibition, in vitro antibody-dependent cell-mediated cytotoxicity and in vivo protection against influenza B viruses belonging to both haemagglutinin lineages and spanning over 70 years of antigenic drift. Electron microscopic analysis of two neuraminidase-antibody complexes shows that the conserved neuraminidase epitopes are located on the head of the molecule and that they are distinct from the enzymatic active site. In the mouse model, one therapeutic dose of antibody 1F2 was more protective than the current standard of treatment, oseltamivir, given twice daily for six days.
PMID: 28827718
ISSN: 2058-5276
CID: 4843372
Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model
Duehr, James; Wohlbold, Teddy John; Oestereich, Lisa; Chromikova, Veronika; Amanat, Fatima; Rajendran, Madhusudan; Gomez-Medina, Sergio; Mena, Ignacio; tenOever, Benjamin R; García-Sastre, Adolfo; Basler, Christopher F; Munoz-Fontela, Cesar; Krammer, Florian
Out of an estimated 31,100 cases since their discovery in 1976, ebolaviruses have caused approximately 13,000 deaths. The vast majority (∼11,000) of these occurred during the 2013-2016 West African epidemic. Three out of five species in the genus are known to cause Ebola Virus Disease in humans. Several monoclonal antibodies against the ebolavirus glycoprotein are currently in development as therapeutics. However, there is still a paucity of monoclonal antibodies that can cross-react between the glycoproteins of different ebolavirus species, and the mechanism of these monoclonal antibody therapeutics is still not understood in detail. Here, we generated a panel of eight murine monoclonal antibodies (MAbs) utilizing a prime-boost vaccination regimen with a Zaire ebolavirus glycoprotein expression plasmid followed by infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. We tested the binding breadth of the resulting monoclonal antibodies using a set of recombinant surface glycoproteins from Reston, Taï Forest, Bundibugyo, Zaire, Sudan, and Marburg viruses and found two antibodies that showed pan-ebolavirus binding. An in vivo Stat2-/- mouse model was utilized to test the ability of these MAbs to protect from infection with a vesicular stomatitis virus expressing the Zaire ebolavirus glycoprotein. Several of our antibodies, including the broadly binding ones, protected mice from mortality despite lacking neutralization capability in vitro, suggesting their protection may be mediated by Fc-FcR interactions. Indeed, three antibodies displayed cellular phagocytosis and/or antibody-dependent cell-mediated cytotoxicity in vitro Our antibodies, specifically the two identified cross-reactive monoclonal antibodies (KL-2E5 and KL-2H7), might add to the understanding of anti-ebolavirus humoral immunity.IMPORTANCE This study describes the generation of a panel of novel anti-ebolavirus glycoprotein monoclonal antibodies, including two antibodies with broad cross-reactivity to all known ebolavirus species. The antibodies were raised using a heterologous DNA-viral vector prime-boost regimen, resulting in a high proportion of cross-reactive antibodies (25%). Similar vaccination regimens have been used successfully to induce broad protection against influenza viruses in humans, and our limited data indicate that this might be a useful strategy for filovirus vaccines as well. Several of our antibodies showed protective efficacy when tested in a novel murine challenge model and may be developed into future therapeutics.
PMCID:5533894
PMID: 28592526
ISSN: 1098-5514
CID: 4843352
RNase III nucleases from diverse kingdoms serve as antiviral effectors
Aguado, Lauren C; Schmid, Sonja; May, Jared; Sabin, Leah R; Panis, Maryline; Blanco-Melo, Daniel; Shim, Jaehee V; Sachs, David; Cherry, Sara; Simon, Anne E; Levraud, Jean-Pierre; tenOever, Benjamin R
In contrast to the DNA-based viruses in prokaryotes, the emergence of eukaryotes provided the necessary compartmentalization and membranous environment for RNA viruses to flourish, creating the need for an RNA-targeting antiviral system. Present day eukaryotes employ at least two main defence strategies that emerged as a result of this viral shift, namely antiviral RNA interference and the interferon system. Here we demonstrate that Drosha and related RNase III ribonucleases from all three domains of life also elicit a unique RNA-targeting antiviral activity. Systemic evolution of ligands by exponential enrichment of this class of proteins illustrates the recognition of unbranched RNA stem loops. Biochemical analyses reveal that, in this context, Drosha functions as an antiviral clamp, conferring steric hindrance on the RNA-dependent RNA polymerases of diverse positive-stranded RNA viruses. We present evidence for cytoplasmic translocation of RNase III nucleases in response to virus in diverse eukaryotes including plants, arthropods, fish, and mammals. These data implicate RNase III recognition of viral RNA as an antiviral defence that is independent of, and possibly predates, other known eukaryotic antiviral systems.
PMCID:5846625
PMID: 28658212
ISSN: 1476-4687
CID: 4843362
Questioning antiviral RNAi in mammals [Comment]
tenOever, Benjamin R
PMID: 28440277
ISSN: 2058-5276
CID: 4843342
SARS-CoV-Encoded Small RNAs Contribute to Infection-Associated Lung Pathology
Morales, Lucía; Oliveros, Juan Carlos; Fernandez-Delgado, Raúl; tenOever, Benjamin Robert; Enjuanes, Luis; Sola, Isabel
Severe acute respiratory syndrome coronavirus (SARS-CoV) causes lethal disease in humans, which is characterized by exacerbated inflammatory response and extensive lung pathology. To address the relevance of small non-coding RNAs in SARS-CoV pathology, we deep sequenced RNAs from the lungs of infected mice and discovered three 18-22 nt small viral RNAs (svRNAs). The three svRNAs were derived from the nsp3 (svRNA-nsp3.1 and -nsp3.2) and N (svRNA-N) genomic regions of SARS-CoV. Biogenesis of CoV svRNAs was RNase III, cell type, and host species independent, but it was dependent on the extent of viral replication. Antagomir-mediated inhibition of svRNA-N significantly reduced in vivo lung pathology and pro-inflammatory cytokine expression. Taken together, these data indicate that svRNAs contribute to SARS-CoV pathogenesis and highlight the potential of svRNA-N antagomirs as antivirals.
PMCID:5662013
PMID: 28216251
ISSN: 1934-6069
CID: 4995802
Efficient and Robust Paramyxoviridae Reverse Genetics Systems
Beaty, Shannon M; Park, Arnold; Won, Sohui T; Hong, Patrick; Lyons, Michael; Vigant, Frederic; Freiberg, Alexander N; tenOever, Benjamin R; Duprex, W Paul; Lee, Benhur
The notoriously low efficiency of Paramyxoviridae reverse genetics systems has posed a limiting barrier to the study of viruses in this family. Previous approaches to reverse genetics have utilized a wide variety of techniques to overcome the technical hurdles. Although robustness (i.e., the number of attempts that result in successful rescue) has been improved in some systems with the use of stable cell lines, the efficiency of rescue (i.e., the proportion of transfected cells that yield at least one successful rescue event) has remained low. We have substantially increased rescue efficiency for representative viruses from all five major Paramyxoviridae genera (from ~1 in 106-107 to ~1 in 102-103 transfected cells) by the addition of a self-cleaving hammerhead ribozyme (Hh-Rbz) sequence immediately preceding the start of the recombinant viral antigenome and the use of a codon-optimized T7 polymerase (T7opt) gene to drive paramyxovirus rescue. Here, we report a strategy for robust, reliable, and high-efficiency rescue of paramyxovirus reverse genetics systems, featuring several major improvements: (i) a vaccinia virus-free method, (ii) freedom to use any transfectable cell type for viral rescue, (iii) a single-step transfection protocol, and (iv) use of the optimal T7 promoter sequence for high transcription levels from the antigenomic plasmid without incorporation of nontemplated G residues. The robustness of our T7opt-HhRbz system also allows for greater latitude in the ratios of transfected accessory plasmids used that result in successful rescue. Thus, our system may facilitate the rescue and interrogation of the increasing number of emerging paramyxoviruses. IMPORTANCE The ability to manipulate the genome of paramyxoviruses and evaluate the effects of these changes at the phenotypic level is a powerful tool for the investigation of specific aspects of the viral life cycle and viral pathogenesis. However, reverse genetics systems for paramyxoviruses are notoriously inefficient, when successful. The ability to efficiently and robustly rescue paramyxovirus reverse genetics systems can be used to answer basic questions about the biology of paramyxoviruses, as well as to facilitate the considerable translational efforts being devoted to developing live attenuated paramyxovirus vaccine vectors.
PMCID:5371697
PMID: 28405630
ISSN: 2379-5042
CID: 4843332
DAI Senses Influenza A Virus Genomic RNA and Activates RIPK3-Dependent Cell Death
Thapa, Roshan J; Ingram, Justin P; Ragan, Katherine B; Nogusa, Shoko; Boyd, David F; Benitez, Asiel A; Sridharan, Haripriya; Kosoff, Rachelle; Shubina, Maria; Landsteiner, Vanessa J; Andrake, Mark; Vogel, Peter; Sigal, Luis J; tenOever, Benjamin R; Thomas, Paul G; Upton, Jason W; Balachandran, Siddharth
Influenza A virus (IAV) is an RNA virus that is cytotoxic to most cell types in which it replicates. IAV activates the host kinase RIPK3, which induces cell death via parallel pathways of necroptosis, driven by the pseudokinase MLKL, and apoptosis, dependent on the adaptor proteins RIPK1 and FADD. How IAV activates RIPK3 remains unknown. We report that DAI (ZBP1/DLM-1), previously implicated as a cytoplasmic DNA sensor, is essential for RIPK3 activation by IAV. Upon infection, DAI recognizes IAV genomic RNA, associates with RIPK3, and is required for recruitment of MLKL and RIPK1 to RIPK3. Cells lacking DAI or containing DAI mutants deficient in nucleic acid binding are resistant to IAV-triggered necroptosis and apoptosis. DAI-deficient mice fail to control IAV replication and succumb to lethal respiratory infection. These results identify DAI as a link between IAV replication and RIPK3 activation and implicate DAI as a sensor of RNA viruses.
PMID: 27746097
ISSN: 1934-6069
CID: 4843312
The Evolution of Antiviral Defense Systems
tenOever, Benjamin R
Self-replicating genetic material presumably provided the architecture necessary for generating the last universal ancestor of all nucleic-acid-based life. As biological complexity increased in the billions of years that followed, the same genetic material also morphed into a wide spectrum of viruses and other parasitic genetic elements. The resulting struggle for existence drove the evolution of host defenses, giving rise to a perpetual arms race. This Perspective summarizes the antiviral mechanisms evident across the tree of life, discussing each in their evolutionary context to postulate how the coevolution of host and pathogen shaped the cellular antiviral defenses we know today.
PMID: 26867173
ISSN: 1934-6069
CID: 4843302
microRNA Function Is Limited to Cytokine Control in the Acute Response to Virus Infection
Aguado, Lauren C; Schmid, Sonja; Sachs, David; Shim, Jaehee V; Lim, Jean K; tenOever, Benjamin R
With the capacity to fine-tune protein expression via sequence-specific interactions, microRNAs (miRNAs) help regulate cell maintenance and differentiation. While some studies have also implicated miRNAs as regulators of the antiviral response, others have found that the RISC complex that facilitates miRNA-mediated silencing is rendered nonfunctional during cellular stress, including virus infection. To determine the global role of miRNAs in the cellular response to virus infection, we generated a vector that rapidly eliminates total cellular miRNA populations in terminally differentiated primary cultures. Loss of miRNAs has a negligible impact on both innate sensing of and immediate response to acute viral infection. In contrast, miRNA depletion specifically enhances cytokine expression, providing a posttranslational mechanism for immune cell activation during cellular stress. This work highlights the physiological role of miRNAs during the antiviral response and suggests their contribution is limited to chronic infections and the acute activation of the adaptive immune response.
PMCID:4683400
PMID: 26651947
ISSN: 1934-6069
CID: 4843292
In Vivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus
Benitez, Asiel A; Panis, Maryline; Xue, Jia; Varble, Andrew; Shim, Jaehee V; Frick, Amy L; López, Carolina B; Sachs, David; tenOever, Benjamin R
Responding to an influenza A virus (IAV) infection demands an effective intrinsic cellular defense strategy to slow replication. To identify contributing host factors to this defense, we exploited the host microRNA pathway to perform an in vivo RNAi screen. To this end, IAV, lacking a functional NS1 antagonist, was engineered to encode individual siRNAs against antiviral host genes in an effort to rescue attenuation. This screening platform resulted in the enrichment of strains targeting virus-activated transcription factors, specific antiviral effectors, and intracellular pattern recognition receptors (PRRs). Interestingly, in addition to RIG-I, the PRR for IAV, a virus with the capacity to silence MDA5 also emerged as a dominant strain in wild-type, but not in MDA5-deficient mice. Transcriptional profiling of infected knockout cells confirmed RIG-I to be the primary PRR for IAV but implicated MDA5 as a significant contributor to the cellular defense against influenza A virus.
PMCID:4586153
PMID: 26074083
ISSN: 2211-1247
CID: 4843272