Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:torrev02

Total Results:

179


Staphylococcus aureus Secreted Toxins and Extracellular Enzymes

Tam, Kayan; Torres, Victor J
Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.
PMID: 30873936
ISSN: 2165-0497
CID: 3733492

Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of Staphylococcus aureus

Grunenwald, Caroline M; Choby, Jacob E; Juttukonda, Lillian J; Beavers, William N; Weiss, Andy; Torres, Victor J; Skaar, Eric P
Manganese (Mn) is an essential micronutrient critical for the pathogenesis of Staphylococcus aureus, a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in S. aureus, MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of mntE transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the mntABC Mn uptake system. Inactivation of mntE or mntR leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of mntE results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for mntE are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, mntE and mntR are required for full virulence of S. aureus during infection, suggesting S. aureus experiences Mn toxicity in vivo Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of mntABC and induction of mntE, both of which are critical for S. aureus pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis.IMPORTANCE Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate Staphylococcus aureus utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of mntE leads to a significant reduction in S. aureus resistance to oxidative stress and S. aureus-mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and S. aureus virulence. Therefore, this establishes MntE as a potential target for development of anti-S. aureus therapeutics.
PMID: 30808698
ISSN: 2150-7511
CID: 3698392

Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus

Copin, Richard; Sause, William E; Fulmer, Yi; Balasubramanian, Divya; Dyzenhaus, Sophie; Ahmed, Jamil M; Kumar, Krishan; Lees, John; Stachel, Anna; Fisher, Jason C; Drlica, Karl; Phillips, Michael; Weiser, Jeffrey N; Planet, Paul J; Uhlemann, Anne-Catrin; Altman, Deena R; Sebra, Robert; van Bakel, Harm; Lighter, Jennifer; Torres, Victor J; Shopsin, Bo
The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.
PMID: 30635416
ISSN: 1091-6490
CID: 3580072

Identification of biologic agents to neutralize the bicomponent leukocidins of Staphylococcus aureus

Chan, Rita; Buckley, Peter T; O'Malley, Aidan; Sause, William E; Alonzo, Francis; Lubkin, Ashira; Boguslawski, Kristina M; Payne, Angela; Fernandez, Jeffrey; Strohl, William R; Whitaker, Brian; Lynch, Anthony Simon; Torres, Victor J
A key aspect underlying the severity of infections caused by Staphylococcus aureus is the abundance of virulence factors that the pathogen uses to thwart critical components of the human immune response. One such mechanism involves the destruction of host immune cells by cytolytic toxins secreted by S. aureus, including five bicomponent leukocidins: PVL, HlgAB, HlgCB, LukED, and LukAB. Purified leukocidins can lyse immune cells ex vivo, and systemic injections of purified LukED or HlgAB can acutely kill mice. Here, we describe the generation and characterization of centyrins that bind S. aureus leukocidins with high affinity and protect primary human immune cells from toxin-mediated cytolysis. Centyrins are small protein scaffolds derived from the fibronectin type III-binding domain of the human protein tenascin-C. Although centyrins are potent in tissue culture assays, their short serum half-lives limit their efficacies in vivo. By extending the serum half-lives of centyrins through their fusion to an albumin-binding consensus domain, we demonstrate the in vivo efficacy of these biologics in a murine intoxication model and in models of both prophylactic and therapeutic treatment of live S. aureus systemic infections. These biologics that target S. aureus virulence factors have potential for treating and preventing serious staphylococcal infections.
PMID: 30651319
ISSN: 1946-6242
CID: 3594952

Staphylococcus aureus Impairs the Function of and Kills Human Dendritic Cells via the LukAB Toxin

Berends, Evelien T M; Zheng, Xuhui; Zwack, Erin E; Ménager, Mickaël M; Cammer, Michael; Shopsin, Bo; Torres, Victor J
Staphylococcus aureus is a human pathogen responsible for high morbidity and mortality worldwide. Recurrent infections with this bacterium are common, suggesting that S. aureus thwarts the development of sterilizing immunity. S. aureus strains that cause disease in humans produce up to five different bicomponent toxins (leukocidins) that target and lyse neutrophils, innate immune cells that represent the first line of defense against S. aureus infections. However, little is known about the role of leukocidins in blunting adaptive immunity. Here, we explored the effects of leukocidins on human dendritic cells (DCs), antigen-presenting cells required for the development of adaptive immunity. Using an ex vivo infection model of primary human monocyte-derived dendritic cells, we found that S. aureus, including strains from different clonal complexes and drug resistance profiles, effectively kills DCs despite efficient phagocytosis. Although all purified leukocidins could kill DCs, infections with live bacteria revealed that S. aureus targets and kills DCs primarily via the activity of leukocidin LukAB. Moreover, using coculture experiments performed with DCs and autologous CD4+ T lymphocytes, we found that LukAB inhibits DC-mediated activation and proliferation of primary human T cells. Taken together, the data determined in the study reveal a novel immunosuppressive strategy of S. aureus whereby the bacterium blunts the development of adaptive immunity via LukAB-mediated injury of DCs.IMPORTANCE Antigen-presenting cells such as dendritic cells (DCs) fulfill an indispensable role in the development of adaptive immunity by producing proinflammatory cytokines and presenting microbial antigens to lymphocytes to trigger a faster, specific, and long-lasting immune response. Here, we studied the effect of Staphylococcus aureus toxins on human DCs. We discovered that the leukocidin LukAB hinders the development of adaptive immunity by targeting human DCs. The ability of S. aureus to blunt the function of DCs could help explain the high frequency of recurrent S. aureus infections. Taken together, the results from this study suggest that therapeutically targeting the S. aureus leukocidins may boost effective innate and adaptive immune responses by protecting innate leukocytes, enabling proper antigen presentation and T cell activation.
PMID: 30602580
ISSN: 2150-7511
CID: 3562862

Skin Associated Staphylococcus Aureus Contributes to Disease Progression in CTCL [Meeting Abstract]

Tegla, Cosmin A.; Herrera, Alberto M.; Seffens, Angelina M.; Fanok, Melania H.; Dean, George; Kawaoka, John; Laird, Mary E.; Fulmer, Yi; Willerslev-Olsen, Andreas; Hymes, Kenneth B.; Latkowski, Jo-Ann; Odum, Niels; Feske, Stefan; Shopsin, Bo; Torres, Victor; Kadin, Marshall E.; Geskin, Larisa J.; Koralov, Sergei B.
ISI:000518218500534
ISSN: 0006-4971
CID: 4505432

Genome plasticity of agr-defective Staphylococcus aureus during clinical infection

Altman, Deena R; Sullivan, Mitchell J; Chacko, Kieran I; Balasubramanian, Divya; Pak, Theodore R; Sause, William E; Kumar, Krishan; Sebra, Robert; Deikus, Gintaras; Attie, Oliver; Rose, Hannah; Lewis, Martha; Fulmer, Yi; Bashir, Ali; Kasarskis, Andrew; Schadt, Eric E; Richardson, Anthony R; Torres, Victor J; Shopsin, Bo; van Bakel, Harm
Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality. To identify additional alterations in agr-defective mutants, we sequenced and assembled the complete genomes of clone pairs from colonizing and infected sites of several patients in whom S. aureus demonstrated a within-host loss of agr function. We report that events associated with agr inactivation result in agr-defective blood and nares strain pairs that are enriched in mutations compared to pairs from wild-type controls. The random distribution of mutations between colonizing and infecting strains from the same patient, and between strains from different patients, suggests that much of the genetic complexity of agr-defective strains result from prolonged infection or therapy-induced stress. However, in one of the agr-defective infecting strains, multiple genetic changes resulted in increased virulence in a murine model of bloodstream infection, bypassing the mutation of agr and raising the possibility that some changes were selected. Expression profiling correlated the elevated virulence of this agr-defective mutant to restored expression of the agr-regulated ESAT6-like Type VII secretion system, a known virulence factor. Thus, additional mutations outside the agr locus can contribute to diversification and adaptation during infection by S. aureusagr mutants associated with poor patient outcome.
PMID: 30061376
ISSN: 1098-5522
CID: 3217342

Hierarchy of human IgG recognition within the Staphylococcus aureus immunome

Radke, Emily E; Brown, Stuart M; Pelzek, Adam J; Fulmer, Yi; Hernandez, David N; Torres, Victor J; Thomsen, Isaac P; Chiang, William K; Miller, Andy O; Shopsin, Bo; Silverman, Gregg J
Staphylococcus aureus is an opportunistic pathogen that causes a range of serious infections associated with significant morbidity, by strains increasingly resistant to antibiotics. However, to date all candidate vaccines have failed to induce protective immune responses in humans. We need a more comprehensive understanding of the antigenic targets important in the context of human infection. To investigate infection-associated immune responses, patients were sampled at initial presentation and during convalescence from three types of clinical infection; skin and soft tissue infection (SSTI), prosthetic joint infection (PJI) and pediatric hematogenous osteomyelitis (PHO). Reactivity of serum IgG was tested with an array of recombinant proteins, representing over 2,652 in-vitro-translated open reading frames (ORFs) from a community-acquired methicillin-resistant S. aureus USA300 strain. High-level reactivity was demonstrated for 104 proteins with serum IgG in all patient samples. Overall, high-level IgG-reactivity was most commonly directed against a subset of secreted proteins. Although based on limited surveys, we found subsets of S. aureus proteins with differential reactivity with serum samples from patients with different clinical syndromes. Together, our studies have revealed a hierarchy within the diverse proteins of the S. aureus "immunome", which will help to advance efforts to develop protective immunotherapeutic agents.
PMCID:6125462
PMID: 30185867
ISSN: 2045-2322
CID: 3271732

Staphylococcus aureus biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing

Bhattacharya, Mohini; Berends, Evelien T M; Chan, Rita; Schwab, Elizabeth; Roy, Sashwati; Sen, Chandan K; Torres, Victor J; Wozniak, Daniel J
Bacterial biofilms efficiently evade immune defenses, greatly complicating the prognosis of chronic infections. How methicillin-resistant Staphylococcus aureus (MRSA) biofilms evade host immune defenses is largely unknown. This study describes some of the major mechanisms required for S. aureus biofilms to evade the innate immune response and provides evidence of key virulence factors required for survival and persistence of bacteria during chronic infections. Neutrophils are the most abundant white blood cells in circulation, playing crucial roles in the control and elimination of bacterial pathogens. Specifically, here we show that, unlike single-celled populations, S. aureus biofilms rapidly skew neutrophils toward neutrophil extracellular trap (NET) formation through the combined activity of leukocidins Panton-Valentine leukocidin and γ-hemolysin AB. By eliciting this response, S. aureus was able to persist, as the antimicrobial activity of released NETs was ineffective at clearing biofilm bacteria. Indeed, these studies suggest that NETs could inadvertently potentiate biofilm infections. Last, chronic infection in a porcine burn wound model clearly demonstrated that leukocidins are required for "NETosis" and facilitate bacterial survival in vivo.
PMCID:6048508
PMID: 29941565
ISSN: 1091-6490
CID: 3192162

Genomic and Geographic Context for the Evolution of High-Risk Carbapenem-Resistant Enterobacter cloacae Complex Clones ST171 and ST78

Gomez-Simmonds, Angela; Annavajhala, Medini K; Wang, Zheng; Macesic, Nenad; Hu, Yue; Giddins, Marla J; O'Malley, Aidan; Toussaint, Nora C; Whittier, Susan; Torres, Victor J; Uhlemann, Anne-Catrin
Recent reports have established the escalating threat of carbapenem-resistant Enterobacter cloacae complex (CREC). Here, we demonstrate that CREC has evolved as a highly antibiotic-resistant rather than highly virulent nosocomial pathogen. Applying genomics and Bayesian phylogenetic analyses to a 7-year collection of CREC isolates from a northern Manhattan hospital system and to a large set of publicly available, geographically diverse genomes, we demonstrate clonal spread of a single clone, ST171. We estimate that two major clades of epidemic ST171 diverged prior to 1962, subsequently spreading in parallel from the Northeastern to the Mid-Atlantic and Midwestern United States and demonstrating links to international sites. Acquisition of carbapenem and fluoroquinolone resistance determinants by both clades preceded widespread use of these drugs in the mid-1980s, suggesting that antibiotic pressure contributed substantially to its spread. Despite a unique mobile repertoire, ST171 isolates showed decreased virulence in vitro While a second clone, ST78, substantially contributed to the emergence of CREC, it encompasses diverse carbapenemase-harboring plasmids, including a potentially hypertransmissible IncN plasmid, also present in other sequence types. Rather than heightened virulence, CREC demonstrates lineage-specific, multifactorial adaptations to nosocomial environments coupled with a unique potential to acquire and disseminate carbapenem resistance genes. These findings indicate a need for robust surveillance efforts that are attentive to the potential for local and international spread of high-risk CREC clones.IMPORTANCE Carbapenem-resistant Enterobacter cloacae complex (CREC) has emerged as a formidable nosocomial pathogen. While sporadic acquisition of plasmid-encoded carbapenemases has been implicated as a major driver of CREC, ST171 and ST78 clones demonstrate epidemic potential. However, a lack of reliable genomic references and rigorous statistical analyses has left many gaps in knowledge regarding the phylogenetic context and evolutionary pathways of successful CREC. Our reconstruction of recent ST171 and ST78 evolution represents a significant addition to current understanding of CREC and the directionality of its spread from the Eastern United States to the northern Midwestern United States with links to international collections. Our results indicate that the remarkable ability of E. cloacae to acquire and disseminate cross-class antibiotic resistance rather than virulence determinants, coupled with its ability to adapt under conditions of antibiotic pressure, likely led to the wide dissemination of CREC.
PMCID:5974468
PMID: 29844109
ISSN: 2150-7511
CID: 3658972