Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:treisj01

Total Results:

80


The Drosophila Ste20-related kinase misshapen is required for embryonic dorsal closure and acts through a JNK MAPK module on an evolutionarily conserved signaling pathway

Su YC; Treisman JE; Skolnik EY
Dorsal closure in the Drosophila embryo occurs during the later stages of embryogenesis and involves changes in cell shape leading to the juxtaposition and subsequent adherence of the lateral epidermal primordia over the amnioserosa. Dorsal closure requires the activation of a conserved c-jun amino-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) module, as it is blocked by null mutations in JNK kinase [hemipterous (hep)] and JNK [basket (bsk)]. Drosophila JNK (DJNK) functions by phosphorylating and activating DJun, which in turn induces the transcription of decapentaplegic (dpp). We provide biochemical and genetic evidence that a Ste20-related kinase, misshapen (msn), functions upstream of hep and bsk to stimulate dorsal closure in the Drosophila embryo. Mammalian (NCK-interacting kinase [NIK]) and Caenorhabditis elegans (mig-15) homologs of msn have been identified; mig-15 is necessary for several developmental processes in C. elegans. These data suggest that msn, mig-15, and NIK are components of a signaling pathway that is conserved among flies, worms, and mammals to control developmentally regulated pathways
PMCID:317054
PMID: 9694801
ISSN: 0890-9369
CID: 7813

Eye development in Drosophila: formation of the eye field and control of differentiation

Treisman JE; Heberlein U
PMID: 9475999
ISSN: 0070-2153
CID: 7829

eyelid antagonizes wingless signaling during Drosophila development and has homology to the Bright family of DNA-binding proteins

Treisman JE; Luk A; Rubin GM; Heberlein U
In Drosophila, pattern formation at multiple stages of embryonic and imaginal development depends on the same intercellular signaling pathways. We have identified a novel gene, eyelid (eld), which is required for embryonic segmentation, development of the notum and wing margin, and photoreceptor differentiation. In these tissues, eld mutations have effects opposite to those caused by wingless (wg) mutations. eld encodes a widely expressed nuclear protein with a region homologous to a novel family of DNA-binding domains. Based on this homology and on the phenotypic analysis, we suggest that Eld could act as a transcription factor antagonistic to the Wg pathway
PMCID:316407
PMID: 9271118
ISSN: 0890-9369
CID: 7274

Morphogenetic gradients and Drosophila pattern formation

Desplan, Claude; Simpson-Brose, Marcia; Treisman, Jessica
SCOPUS:85004905504
ISSN: 0248-4900
CID: 2813142

Synergy between the hunchback and bicoid morphogens is required for anterior patterning in Drosophila

Simpson-Brose, M; Treisman, J; Desplan, C
Anterior patterning of the Drosophila embryo is specified by the localized expression of the gap genes, which is controlled by the gradient of the maternal morphogen bicoid (bcd). Another maternal component, hunchback (hb), can substitute for bcd in the thorax and abdomen. Here we show that hb is required for bcd to execute all of its functions. Removal of both maternal and zygotic hb produces embryos with disrupted polarity that fail to express all known bcd target genes correctly. Proper expression of hb and the head gap genes requires synergistic activation by hb and bcd. We propose that it is the combined activity of bcd and hb, and not bcd alone, that forms the morphogenetic gradient that specifies polarity along the embryonic axis and patterns the embryo. bcd may be a newly acquired Drosophila gene, which is gradually replacing some of the functions performed by maternal hb in other species.
PMID: 8087852
ISSN: 0092-8674
CID: 1695332

Down-regulation of the Drosophila morphogen bicoid by the torso receptor-mediated signal transduction cascade

Ronchi, E; Treisman, J; Dostatni, N; Struhl, G; Desplan, C
Anterior body pattern in Drosophila is specified by the graded distribution of the bicoid protein (bcd), which activates subordinate genes in distinct anterior domains. Subsequently, transcription of these target genes is repressed at the anterior pole owing to the activity of the receptor tyrosine kinase torso (tor). We show that both activation by bcd and repression by tor can be reproduced by a minimal promoter containing only bcd-binding sites upstream of a naive transcriptional start site. Repression requires the D-raf kinase and is associated with phosphorylation of bcd protein. Repression does not require either tailless or huckebein, which were previously thought to constitute the sole zygotic output of the tor signaling system. Finally, addition of a heterologous transcriptional activation domain to bcd renders the protein insensitive to tor-mediated repression. We propose that phosphorylation resulting from the activity of the tor signal transduction cascade down-regulates transcriptional activation by the bcd morphogen.
PMID: 8343961
ISSN: 0092-8674
CID: 1695352

The homeodomain: a new face for the helix-turn-helix?

Treisman, J; Harris, E; Wilson, D; Desplan, C
The discovery of conserved protein domains found in many Drosophila and mammalian developmental gene products suggests that fundamental developmental processes are conserved throughout evolution. Our understanding of development has been enhanced by the discovery of the widespread role of the homeodomain (HD). The action of HD-containing proteins as transcriptional regulators is mediated through a helix-turn-helix motif which confers sequence specific DNA binding. Unexpectedly, the well conserved structural homology between the HD and the prokaryotic helix-turn-helix proteins contrasts with their divergent types of physical interaction with DNA. A C-terminal extension of the HD recognition helix has assumed the role that the N-terminus of the prokaryotic helix plays for specification of DNA binding preference. However, the HD appears also capable of recognizing DNA in an alternative way and its specificity in vivo may be modified by regions outside the helix-turn-helix motif. We propose that this intrinsic complexity of the HD, as well as its frequent association with other DNA binding domains, explains the functional specificity achieved by genes encoding highly related HDs.
PMID: 1350195
ISSN: 0265-9247
CID: 1695362

The paired box encodes a second DNA-binding domain in the paired homeo domain protein

Treisman, J; Harris, E; Desplan, C
The homeo box, which encodes the DNA-binding homeo domain, is a DNA sequence motif present in several Drosophila developmental genes; it has been used to identify many homologous genes involved in mammalian development. The paired box is another conserved sequence motif, first identified in the paired (prd) and gooseberry (gsb) Drosophila homeo domain genes. It encodes a 128-amino-acid domain, the paired domain, which has since been found in other fly and mouse gene products, in association with the homeo domain or in its absence. We show that the paired box of the prd gene encodes a DNA-binding activity, independent of the DNA-binding activity of the Paired (Prd) homeo domain and with a different sequence specificity. The amino-terminal region of the paired domain, including one of the three predicted alpha-helices, is necessary and sufficient for binding. We investigate the binding of the Prd protein to two sites in the even-skipped promoter, which are composed of overlapping sequences bound by the homeo domain and by the paired domain. We also show that a mutation in the paired box of Prd, corresponding to the mutation in the paired box of the mouse Pax-1 gene thought to cause the undulated skeletal phenotype, destroys the ability of the Prd protein to bind to the paired domain-specific site. This supports the view that the undulated phenotype results from the inactivation of the DNA-binding activity of the paired domain of Pax-1.
PMID: 1672661
ISSN: 0890-9369
CID: 1695372

A single amino acid can determine the DNA binding specificity of homeodomain proteins

Treisman, J; Gonczy, P; Vashishtha, M; Harris, E; Desplan, C
Many Drosophila developmental genes contain a DNA binding domain encoded by the homeobox. This homeodomain contains a region distantly homologous to the helix-turn-helix motif present in several prokaryotic DNA binding proteins. We investigated the nature of homeodomain-DNA interactions by making a series of mutations in the helix-turn-helix motif of the Drosophila homeodomain protein Paired (Prd). This protein does not recognize sequences bound by the homeodomain proteins Fushi tarazu (Ftz) or Bicoid (Bcd). We show that changing a single amino acid at the C-terminus of the recognition helix is both necessary and sufficient to confer the DNA binding specificity of either Ftz or Bcd on Prd. This simple rule indicates that the amino acids that determine the specificity of homeodomains are different from those mediating protein-DNA contacts in prokaryotic proteins. We further show that Prd contains two DNA binding activities. The Prd homeodomain is responsible for one of them while the other is not dependent on the recognition helix.
PMID: 2572327
ISSN: 0092-8674
CID: 1695402

The products of the Drosophila gap genes hunchback and Kruppel bind to the hunchback promoters

Treisman, J; Desplan, C
The first zygotic genes to be expressed during early Drosophila development are the gap genes. Their role is to read and interpret coarse positional information deposited in the egg by the mother and to refine it by cross-regulatory interactions and by controlling a class of pair-rule genes. Little is known about the molecular mechanisms by which the three cloned gap genes carry out their genetically defined functions. Here we report that the Kruppel (Kr) gene product (Kr) binds to the sequence AAGGGGTTAA, whereas the hunchback (hb) gene product (Hb) recognizes the consensus ACNCAAAAAANTA. We have identified binding sites for these proteins upstream of the two hb promoters, which we suggest could mediate the repression of hb by Kr and perhaps allow hb to influence its own expression.
PMID: 2797150
ISSN: 0028-0836
CID: 1695422