Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:chiril01

Total Results:

258


Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma

Snuderl, Matija; Kannan, Kasthuri; Pfaff, Elke; Wang, Shiyang; Stafford, James M; Serrano, Jonathan; Heguy, Adriana; Ray, Karina; Faustin, Arline; Aminova, Olga; Dolgalev, Igor; Stapleton, Stacie L; Zagzag, David; Chiriboga, Luis; Gardner, Sharon L; Wisoff, Jeffrey H; Golfinos, John G; Capper, David; Hovestadt, Volker; Rosenblum, Marc K; Placantonakis, Dimitris G; LeBoeuf, Sarah E; Papagiannakopoulos, Thales Y; Chavez, Lukas; Ahsan, Sama; Eberhart, Charles G; Pfister, Stefan M; Jones, David T W; Karajannis, Matthias A
Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. Here, we analyzed pediatric and adult pineoblastoma samples (n = 23) using a combination of genome-wide DNA methylation profiling and whole-exome sequencing or whole-genome sequencing. Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower-grade pineal tumors and normal pineal gland. Recurrent variants were found in genes involved in PKA- and NF-κB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expresion of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain.
PMCID:6054684
PMID: 30030436
ISSN: 2041-1723
CID: 3202352

Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection

Winer, Benjamin Y; Shirvani-Dastgerdi, Elham; Bram, Yaron; Sellau, Julie; Low, Benjamin E; Johnson, Heath; Huang, Tiffany; Hrebikova, Gabriela; Heller, Brigitte; Sharon, Yael; Giersch, Katja; Gerges, Sherif; Seneca, Kathleen; Pais, Mihai-Alexandru; Frankel, Angela S; Chiriboga, Luis; Cullen, John; Nahass, Ronald G; Lutgehetmann, Marc; Toettcher, Jared E; Wiles, Michael V; Schwartz, Robert E; Ploss, Alexander
Chronic delta hepatitis, caused by hepatitis delta virus (HDV), is the most severe form of viral hepatitis, affecting at least 20 million hepatitis B virus (HBV)-infected patients worldwide. HDV/HBV co- or superinfections are major drivers for hepatocarcinogenesis. Antiviral treatments exist only for HBV and can only suppress but not cure infection. Development of more effective therapies has been impeded by the scarcity of suitable small-animal models. We created a transgenic (tg) mouse model for HDV expressing the functional receptor for HBV and HDV, the human sodium taurocholate cotransporting peptide NTCP. Both HBV and HDV entered hepatocytes in these mice in a glycoprotein-dependent manner, but one or more postentry blocks prevented HBV replication. In contrast, HDV persistently infected hNTCP tg mice coexpressing the HBV envelope, consistent with HDV dependency on the HBV surface antigen (HBsAg) for packaging and spread. In immunocompromised mice lacking functional B, T, and natural killer cells, viremia lasted at least 80 days but resolved within 14 days in immunocompetent animals, demonstrating that lymphocytes are critical for controlling HDV infection. Although acute HDV infection did not cause overt liver damage in this model, cell-intrinsic and cellular innate immune responses were induced. We further demonstrated that single and dual treatment with myrcludex B and lonafarnib efficiently suppressed viremia but failed to cure HDV infection at the doses tested. This small-animal model with inheritable susceptibility to HDV opens opportunities for studying viral pathogenesis and immune responses and for testing novel HDV therapeutics.
PMID: 29950446
ISSN: 1946-6242
CID: 3161932

Expression of PRAME is increased in K27M mutant gliomas: Identification of a potential target for immunotherapy [Meeting Abstract]

Spino, Marissa; Stafford, James; Chiriboga, Luis; Zeck, Briana; Sviderskiy, Vladislav; Chi, Andrew; Possemato, Richard; Snuderl, Matija
ISI:000434064400047
ISSN: 0022-3069
CID: 3156192

Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP containing the ancestral DUF1220 domain in pineoblastoma [Meeting Abstract]

Snuderl, M; Kannan, K; Pfaff, E; Wang, S; Stafford, J; Serrano, J; Heguy, A; Ray, K; Faustin, A; Aminova, O; Dolgalev, I; Stapleton, S; Zagzag, D; Chiriboga, L; Gardner, S; Wisoff, J; Golfinos, J; Capper, D; Hovestadt, V; Rosenblum, M; Placantonakis, D; LeBoeuf, S; Papagiannakopoulos, T; Chavez, L; Ahsan, S; Eberhart, C; Pfister, S; Jones, D; Karajannis, M
BACKGROUND: Pineoblastoma is a rare and highly aggressive brain cancer of childhood, histologically belonging to the spectrum of primitive neuroectodermal tumors. Patients with germline mutations in DICER1, a ribonuclease involved in microRNA processing, have increased risk of pineoblastoma, but genetic drivers of sporadic pineoblastoma remain unknown. METHODS: We analyzed pediatric and adult pineoblastoma samples (n=23) using integrated genomic studies, including genome-wide DNA methylation profiling, whole-exome or whole-genome sequencing, and whole-transcriptome analysis. RESULTS: Pediatric and adult pineoblastomas showed distinct methylation profiles, the latter clustering with lower grade pineal tumors and normal pineal gland. Recurrent somatic mutations were found in genes involved in PKA-and NF-kappaB signaling, as well as in chromatin remodeling genes. We identified recurrent homozygous deletions of DROSHA, acting upstream of DICER1 in microRNA processing, and a novel microduplication involving chromosomal region 1q21 containing PDE4DIP (myomegalin), comprising the ancient DUF1220 protein domain. Expression of PDE4DIP and DUF1220 proteins was present exclusively in pineoblastoma with PDE4DIP gain. Whole-transcriptome analysis showed that homozygous loss of DROSHA led to distinct changes in RNA expression profile. Disruption of the DROSHA locus in human neural stem cells using the CRISPR/Cas9 system, led to decrease of the DROSHA protein, and massive loss of miRNAs. CONCLUSION: We identified recurrent homozygous deletions of DROSHA in pineoblastoma, suggesting that different mechanisms disrupting miRNA processing are involved in the pathogenesis of familial versus sporadic pineoblastoma. Furthermore, a novel microduplication of PDE4DIP leading to upregulation of DUF1220 protein suggests DUF1220 as a novel oncogenic driver in pineoblastoma
EMBASE:623098707
ISSN: 1523-5866
CID: 3211282

Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus

Burgess, Hannah M; Pourchet, Aldo; Hajdu, Cristina H; Chiriboga, Luis; Frey, Alan B; Mohr, Ian
Through the action of two virus-encoded decapping enzymes (D9 and D10) that remove protective caps from mRNA 5'-termini, Vaccinia virus (VACV) accelerates mRNA decay and limits activation of host defenses. D9- or D10-deficient VACV are markedly attenuated in mice and fail to counter cellular double-stranded RNA-responsive innate immune effectors, including PKR. Here, we capitalize upon this phenotype and demonstrate that VACV deficient in either decapping enzyme are effective oncolytic viruses. Significantly, D9- or D10-deficient VACV displayed anti-tumor activity against syngeneic mouse tumors of different genetic backgrounds and human hepatocellular carcinoma xenografts. Furthermore, D9- and D10-deficient VACV hyperactivated the host anti-viral enzyme PKR in non-tumorigenic cells compared to wild-type virus. This establishes a new genetic platform for oncolytic VACV development that is deficient for a major pathogenesis determinant while retaining viral genes that support robust productive replication like those required for nucleotide metabolism. It further demonstrates how VACV mutants unable to execute a fundamental step in virus-induced mRNA decay can be unexpectedly translated into a powerful anti-tumor therapy.
PMCID:5991893
PMID: 29888320
ISSN: 2372-7705
CID: 3154372

Validation of PD-L1 Immunohistochemical Stain Using Clone 22C3 in Different Automatic Stainer Platforms [Meeting Abstract]

Basu, Atreyee; Chiriboga, Luis; Zhou, Fang; Moreira, Andre
ISI:000429308604380
ISSN: 0893-3952
CID: 3048982

Validation of PD-L1 Immunohistochemical Stain Using Clone 22C3 in Different Automatic Stainer Platforms [Meeting Abstract]

Basu, Atreyee; Chiriboga, Luis; Zhou, Fang; Moreira, Andre
ISI:000459341003334
ISSN: 0023-6837
CID: 5525562

RECURRENT HOMOZYGOUS DELETION OF DROSHA AND MICRODUPLICATION OF PDE4DIP CONTAINING THE ANCESTRAL DUF1220 DOMAIN IN PINEOBLASTOMA [Meeting Abstract]

Snuderl, Matija; Kannan, Kasthuri; Pfaff, Elke; Wang, Shiyang; Stafford, James; Serrano, Jonathan; Heguy, Adriana; Ray, Karina; Faustin, Arline; Aminova, Olga; Dolgalev, Igor; Stapleton, Stacie; Zagzag, David; Chiriboga, Luis; Gardner, Sharon; Wisoff, Jeffrey; Golfinos, John; Capper, David; Hovestadt, Volker; Rosenblum, Marc; Placantonakis, Dimitris; LeBoeuf, Sarah; Papagiannakopoulos, Thales; Chavez, Lukas; Ahsan, Sama; Eberhart, Charles; Pfister, Stefan; Jones, David; Karajannis, Matthias
ISI:000438339000189
ISSN: 1522-8517
CID: 5525552

Low-Grade Astrocytoma Mutations in IDH1, P53, and ATRX Cooperate to Block Differentiation of Human Neural Stem Cells via Repression of SOX2

Modrek, Aram S; Golub, Danielle; Khan, Themasap; Bready, Devin; Prado, Jod; Bowman, Christopher; Deng, Jingjing; Zhang, Guoan; Rocha, Pedro P; Raviram, Ramya; Lazaris, Charalampos; Stafford, James M; LeRoy, Gary; Kader, Michael; Dhaliwal, Joravar; Bayin, N Sumru; Frenster, Joshua D; Serrano, Jonathan; Chiriboga, Luis; Baitalmal, Rabaa; Nanjangud, Gouri; Chi, Andrew S; Golfinos, John G; Wang, Jing; Karajannis, Matthias A; Bonneau, Richard A; Reinberg, Danny; Tsirigos, Aristotelis; Zagzag, David; Snuderl, Matija; Skok, Jane A; Neubert, Thomas A; Placantonakis, Dimitris G
Low-grade astrocytomas (LGAs) carry neomorphic mutations in isocitrate dehydrogenase (IDH) concurrently with P53 and ATRX loss. To model LGA formation, we introduced R132H IDH1, P53 shRNA, and ATRX shRNA into human neural stem cells (NSCs). These oncogenic hits blocked NSC differentiation, increased invasiveness in vivo, and led to a DNA methylation and transcriptional profile resembling IDH1 mutant human LGAs. The differentiation block was caused by transcriptional silencing of the transcription factor SOX2 secondary to disassociation of its promoter from a putative enhancer. This occurred because of reduced binding of the chromatin organizer CTCF to its DNA motifs and disrupted chromatin looping. Our human model of IDH mutant LGA formation implicates impaired NSC differentiation because of repression of SOX2 as an early driver of gliomagenesis.
PMCID:5687844
PMID: 29091765
ISSN: 2211-1247
CID: 2758982

Membrane Attack Complex (MAC) Deposition in Lupus Nephritis Is Associated with Hypertension and Poor Clinical Response to Treatment [Meeting Abstract]

Wang, Shudan; Wu, Ming; Chiriboga, Luis; Zeck, Briana; Belmont, HMichael
ISI:000411824100669
ISSN: 2326-5205
CID: 2766872