InvF is required for expression of genes encoding proteins secreted by the SPI1 type III secretion apparatus in Salmonella typhimurium
Darwin KH; Miller VL
The expression of genes encoding proteins secreted by the SPI1 (Salmonella pathogenicity island) type III secretion apparatus is known to require the transcriptional activators SirA and HilA. However, neither SirA nor HilA is believed to directly activate the promoters of these genes. invF, the first gene of the inv-spa gene cluster, is predicted to encode an AraC-type transcriptional activator and is required for invasion into cultured epithelial cells. However, the genes which are regulated by InvF have not been identified. In this work, an in-frame deletion in invF was constructed and tested for the expression of Phi(sigD-lacZYA), sipC::Tn5lacZY, and a plasmid-encoded Phi(sicA-lacZYA). SigD (Salmonella invasion gene) is a secreted protein required for the efficient invasion of Salmonella typhimurium into cultured eucaryotic cells. sicA (Salmonella invasion chaperone) is the first gene of a putative operon encoding the Sip/Ssp (Salmonella invasion/Salmonella secreted proteins) invasion proteins secreted by the SPI1 type III export apparatus. invF was required for the expression of the sigD, sicA, and sipC fusions. This is the first demonstration that there is a functional promoter in the intergenic sequence between spaS and sicA. In addition, several proteins were either absent from or found in reduced amounts in the culture supernatants of the invF mutant. Therefore, invF is required for the optimal expression of several genes encoding SPI1-secreted proteins. Genetic evidence is also presented suggesting there is HilA-dependent readthrough transcription from the invF promoter at least through sipC
PMCID:93983
PMID: 10438766
ISSN: 0021-9193
CID: 45187
Molecular basis of the interaction of Salmonella with the intestinal mucosa
Darwin KH; Miller VL
Salmonella is one of the most extensively characterized bacterial pathogens and is a leading cause of bacterial gastroenteritis. Despite this, we are only just beginning to understand at a molecular level how Salmonella interacts with its mammalian hosts to cause disease. Studies during the past decade on the genetic basis of virulence of Salmonella have significantly advanced our understanding of the molecular basis of the host-pathogen interaction, yet many questions remain. In this review, we focus on the interaction of enterocolitis-causing salmonellae with the intestinal mucosa, since this is the initiating step for most infections caused by Salmonella. Animal and in vitro cell culture models for the interaction of these bacteria with the intestinal epithelium are reviewed, along with the bacterial genes that are thought to affect this interaction. Lastly, recent studies on the response of epithelial cells to Salmonella infection and how this might promote diarrhea are discussed
PMCID:100246
PMID: 10398673
ISSN: 0893-8512
CID: 45188