Searched for: in-biosketch:yes
person:delmam01
A Novel Non-canonical Role Of Cx43 In The Heart: Ensuring The Arrival Of Nav1.5 To The Intercalated Disc [Meeting Abstract]
Pascual, Esperanza Agullo; Lin, Xianming; Pfenniger, Anna; Luebkemeier, Indra; Willecke, Klaus; Rothenberg, Eli; Delmar, Mario
ISI:000330353800015
ISSN: 0009-7330
CID: 815882
Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque
Agullo-Pascual, Esperanza; Reid, Dylan A; Keegan, Sarah; Sidhu, Manavjeet; Fenyo, David; Rothenberg, Eli; Delmar, Mario
AIMS: Cell function requires formation of molecular clusters localized to discrete subdomains. The composition of these interactomes, and their spatial organization, cannot be discerned by conventional microscopy given the resolution constraints imposed by the diffraction limit of light ( approximately 200-300 nm). Our aims were (i) Implement single-molecule imaging and analysis tools to resolve the nano-scale architecture of cardiac myocytes. (ii) Using these tools, to map two molecules classically defined as components 'of the desmosome' and 'of the gap junction', and defined their spatial organization. METHODS AND RESULTS: We built a set-up on a conventional inverted microscope using commercially available optics. Laser illumination, reducing, and oxygen scavenging conditions were used to manipulate the blinking behaviour of individual fluorescent reporters. Movies of blinking fluorophores were reconstructed to generate subdiffraction images at approximately 20 nm resolution. With this method, we characterized clusters of connexin43 (Cx43) and of 'the desmosomal protein' plakophilin-2 (PKP2). In about half of Cx43 clusters, we observed overlay of Cx43 and PKP2 at the Cx43 plaque edge. SiRNA-mediated loss of Ankyrin-G expression yielded larger Cx43 clusters, of less regular shape, and larger Cx43-PKP2 subdomains. The Cx43-PKP2 subdomain was validated by a proximity ligation assay (PLA) and by Monte-Carlo simulations indicating an attraction between PKP2 and Cx43. CONCLUSIONS: (i) Super-resolution fluorescence microscopy, complemented with Monte-Carlo simulations and PLAs, allows the study of the nanoscale organization of an interactome in cardiomyocytes. (ii) PKP2 and Cx43 share a common hub that permits direct physical interaction. Its relevance to excitability, electrical coupling, and arrhythmogenic right ventricular cardiomyopathy, is discussed.
PMCID:3797628
PMID: 23929525
ISSN: 0008-6363
CID: 573722
3D Tomographic Segmentation of Adult Cardiac Ventricle reveals a Complex Tubular and Vesicular Network surrounding the Gap Junction Plaque. Ultrastructure of the Connexome
Leo-Macias, A; Liang, F; Delmar, M
BACKGROUND: The cardiac intercalated disc (ID) has been extensively studied by conventional transmission electron microscopy (EM). Yet, novel methods for tissue preservation (high-pressure freezing), image (3D tomographic EM) and analysis (image segmentation) that greatly improve image quality/resolution, have not been applied to the ID. Recent studies show that, at the ID, the gap junction protein Connexin43 is part of an interactome (a "connexome"). Here, we provide a structural characterization of the connexome. METHODS: Adult mouse ventricular tissue was prepared by high-pressure freezing and freeze substitution and embedded in resin. 200 nm thick sections were imaged with a 200kV electron microscope (FEI TF20). Images were collected at a set magnification of 9.6k on a 4kx4k CCD camera set to 2x binning, giving an effective pixel size of 1.76 nm. Dual-axis tilt series (1 masculine steps, +/-70 masculine per axis) were acquired using SerialEM. Protomo software was used for aligning projection images and reconstructing tomograms. Visualization/segmentation of objects of interest was performed in Amira. RESULTS: In addition to classic ID structures, we observed (a) close proximity between gap junctions and mitochondria of opposing cells; (b) a complex network of tubular structures running perpendicular to the long cell axis; these structures showed a hollow interior, with an estimated inner diameter of ~40 nm and were often adjacent to gap junctions or desmosomes; (c) triads formed by lateral edges of gap junctions and desmosomes, with a rough budding vesicle separating the two structures; (d) budding vesicles of approximately 50 nm interrupting the continuity of one side of the gap junction plaque; (e) vesicular bodies of approx. 65 nm in diameter in the intercellular space, and in proximity to gap junction-containing regions. CONCLUSIONS: We describe the nanometric landscape that surrounds gap junctions. We speculate that the connexome includes a physical association with molecules of the mitochondria, desmosome and microtubular network, and propose that microsomes may pass from one cell to another at the ID. Functional characterization of these structures may lead to novel clues as to the mechanisms of inherited or acquired arrhythmias that involve disruption of the ID.
ORIGINAL:0010421
ISSN: 1547-5271
CID: 1899642
Regulation of cardiovascular connexins by mechanical forces and junctions
Meens, Merlijn J; Pfenniger, Anna; Kwak, Brenda R; Delmar, Mario
Connexins form a family of transmembrane proteins that consists of 20 members in humans and 21 members in mice. Six connexins assemble into a connexon that can function as a hemichannel or connexon that can dock to a connexon expressed by a neighbouring cell, thereby forming a gap junction channel. Such intercellular channels synchronize responses in multicellular organisms through direct exchange of ions, small metabolites, and other second messenger molecules between the cytoplasms of adjacent cells. Multiple connexins are expressed in the cardiovascular system. These connexins not only experience the different biomechanical forces within this system, but may also act as effector proteins in co-ordinating responses within groups of cells towards these forces. This review discusses recent insights regarding regulation of cardiovascular connexins by mechanical forces and junctions. It specifically addresses effects of (i) shear stress on endothelial connexins, (ii) hypertension on vascular connexins, and (iii) changes in afterload and the composition of myocardial mechanical junctions on cardiac connexins.
PMCID:3695747
PMID: 23612582
ISSN: 0008-6363
CID: 464932
Super-resolution microscopy to visualize the Connexin43/Plakophilin-2 complex. Structure of a molecular substrate of arvc [Meeting Abstract]
Pascual, E A; Reld, D A; Rothenberg, E; Delmar, M
Introduction: Most cases of familial arrhythmogenic right ventricular cardiomyopathy (ARVC) associate with mutations in desmosomal proteins, most commonly plakophilin-2 (PKP2). A crosstalk between PKP2 and connexin43 (Cx43) has been proposed as a pathogenic mechanism. We speculate that a) Cx43 and PKP2 are in close physical proximity, allowing for direct intermolecular interaction and b) the structure of the Cx43- PKP2 complex depends on expression of the scaffolding protein ankyrin-G (AnkG). To test these hypotheses, we implemented a novel method (direct stochastic reconstruction microscopy; dSTORM) that allows for spatial resolution of fluorescence microscopy images in the nanoscale. Methods: Neonatal rat ventricular myocytes were labeled with antibodies to Cx43 and PKP2 and imaged using a custom- made microscopy system. On-off cycles of light emission were recorded in 2000 frames, and the image reconstructed by custom-made software. Cells were treated with siRNAfor AnkG, or non-targeted constructs, and the characteristics of Cx43 and PKP2 clusters compared to control. Results: Optical resolution of dSTORM images was 20 nm. Cx43 was found in circular clusters of two predominant sizes: 13313+/-328 and 25035+226 nm^2. PKP2 clusters were of various shapes and widespread size distribution, but consistently found less than 40 nm away from a Cx43 plaque, with signals overlapping on the edges of the plaques. Loss of AnkG expression drastically altered Cx43 cluster morphology becoming less circular and of a larger dimension. Close proximity to PKP2 was maintained. Yet, the total number of PKP2 clusters was significantly decreased. Conclusion: We implemented a method that breaks the optical resolution barrier imposed by the diffraction properties of light (~300 nm), to reach a range previously reserved to electron microscopy (~20 nm). We demonstrate that PKP2 populates the edge of Cx43 plaques (the perinexus). Cx43 cluster architecture depends on AnkG expression and likely, Cx43-cytoskeletal interacti!
EMBASE:71066555
ISSN: 1547-5271
CID: 369492
Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels
Lubkemeier, Indra; Requardt, Robert Pascal; Lin, Xianming; Sasse, Philipp; Andrie, Rene; Schrickel, Jan Wilko; Chkourko, Halina; Bukauskas, Feliksas F; Kim, Jung-Sun; Frank, Marina; Malan, Daniela; Zhang, Jiong; Wirth, Angela; Dobrowolski, Radoslaw; Mohler, Peter J; Offermanns, Stefan; Fleischmann, Bernd K; Delmar, Mario; Willecke, Klaus
The cardiac intercalated disc harbors mechanical and electrical junctions as well as ion channel complexes mediating propagation of electrical impulses. Cardiac connexin43 (Cx43) co-localizes and interacts with several of the proteins located at intercalated discs in the ventricular myocardium. We have generated conditional Cx43D378stop mice lacking the last five C-terminal amino acid residues, representing a binding motif for zonula occludens protein-1 (ZO-1), and investigated the functional consequences of this mutation on cardiac physiology and morphology. Newborn and adult homozygous Cx43D378stop mice displayed markedly impaired and heterogeneous cardiac electrical activation properties and died from severe ventricular arrhythmias. Cx43 and ZO-1 were co-localized at intercalated discs in Cx43D378stop hearts, and the Cx43D378stop gap junction channels showed normal coupling properties. Patch clamp analyses of isolated adult Cx43D378stop cardiomyocytes revealed a significant decrease in sodium and potassium current densities. Furthermore, we also observed a significant loss of Nav1.5 protein from intercalated discs in Cx43D378stop hearts. The phenotypic lethality of the Cx43D378stop mutation was very similar to the one previously reported for adult Cx43 deficient (Cx43KO) mice. Yet, in contrast to Cx43KO mice, the Cx43 gap junction channel was still functional in the Cx43D378stop mutant. We conclude that the lethality of Cx43D378stop mice is independent of the loss of gap junctional intercellular communication, but most likely results from impaired cardiac sodium and potassium currents. The Cx43D378stop mice reveal for the first time that Cx43 dependent arrhythmias can develop by mechanisms other than impairment of gap junction channel function.
PMCID:3678986
PMID: 23558439
ISSN: 0300-8428
CID: 599782
Super-resolution Scanning Patch Clamp Reveals Clustering of Functional Ion Channels in Adult Ventricular Myocyte
Bhargava, Anamika; Lin, Xianming; Novak, Pavel; Mehta, Kinneri; Korchev, Yuri; Delmar, Mario; Gorelik, Julia
Rationale: Compartmentation of ion channels on the cardiomyocyte surface is important for electric propagation and electromechanical coupling. The specialized T-tubule and costameric structures facilitate spatial coupling of various ion channels and receptors. Existing methods such as immunofluorescence and patch clamp techniques are limited in their ability to localize functional ion channels. As such, a correlation between channel protein location and channel function remains incomplete. Objective: To validate a method that permits routine imaging of the topography of a live cardiomyocyte and study clustering of functional ion channels from a specific microdomain. Methods and Results: We used scanning ion conductance microscopy and conventional cell-attached patch clamp with a software modification that allows controlled increase of pipette tip diameter. The sharp nanopipette used for topography scan was modified into a larger patch pipette that could be positioned with nanoscale precision to a specific site of interest (crest, groove, or T-tubules of cardiomyocytes) and sealed to the membrane for cell-attached recording of ion channels. Using this method, we significantly increased the probability of detecting activity of L-type calcium channels in the T-tubules of ventricular cardiomyocytes. We also demonstrated that active sodium channels do not distribute homogenously on the sarcolemma instead, they segregate into clusters of various densities, most crowded in the crest region, that are surrounded by areas virtually free of functional sodium channels. Conclusions: Our new method substantially increases the throughput of recording location-specific functional ion channels on the cardiomyocyte sarcolemma, thereby allowing characterization of ion channels in relation to the microdomain where they reside.
PMCID:3899650
PMID: 23438901
ISSN: 0009-7330
CID: 301192
Heterogeneity of ATP-sensitive K+ channels in cardiac myocytes: Enrichment at the intercalated disk [Meeting Abstract]
Hong, M; Bao, L; Kefaloyianni, E; Agullo-Pascual, E; Chkourko, H; Foster, M; Taskin, E; Reid, D A; Rothenberg, E; Delmar, M; Coetzee, W A
Ventricular KATP channels link intracellular energy metabolism to membrane excitability and contractility. We identified plakoglobin (PG) and plakophilin-2 (PKP2) as KATP channel associated proteins and investigated whether the association of KATP channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between KATP channels and PKP2 and PG in rat heart. Immunolocalization experiments demonstrated that KATP channel subunits are expressed at a higher density at the intercalated disk (ICD) in hearts, where they colocalized with PKP2 and PG. Super-resolution microscopy demonstrate that KATP channels are clustered within nanometer distances from junctional proteins. The local KATP channel density was larger at the cell end when compared to local currents recorded from the cell's center. The KATP channel unitary conductance, block by MgATP and activation by MgADP did not differ between these two locations. Whole-cell KATP channel current density was ~40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of KATP channels was absent in the PKP2 deficient mice, but the KATP channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of KATP channel distribution within a cardiac myocyte. The higher KATP channel density at the ICD implies a possible role at the intercellular junctions during cardiac ischemia
EMBASE:71151346
ISSN: 1530-6860
CID: 550862
Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy
Noorman, Maartje; Hakim, Sara; Kessler, Elise; Groeneweg, Judith A; Cox, Moniek G P J; Asimaki, Angeliki; van Rijen, Harold V M; van Stuijvenberg, Leonie; Chkourko, Halina; van der Heyden, Marcel A G; Vos, Marc A; de Jonge, Nicolaas; van der Smagt, Jasper J; Dooijes, Dennis; Vink, Aryan; de Weger, Roel A; Varro, Andras; de Bakker, Jacques M T; Saffitz, Jeffrey E; Hund, Thomas J; Mohler, Peter J; Delmar, Mario; Hauer, Richard N W; van Veen, Toon A B
BACKGROUND: Arrhythmogenic cardiomyopathy (AC) is closely associated with desmosomal mutations in a majority of patients. Arrhythmogenesis in patients with AC is likely related to remodeling of cardiac gap junctions and increased levels of fibrosis. Recently, using experimental models, we also identified sodium channel dysfunction secondary to desmosomal dysfunction. OBJECTIVE: To assess the immunoreactive signal levels of the sodium channel protein Na1.5, as well as connexin43 (Cx43) and plakoglobin (PKG), in myocardial specimens obtained from patients with AC. METHODS: Left and right ventricular free wall postmortem material was obtained from 5 patients with AC and 5 controls matched for age and sex. Right ventricular septal biopsies were taken from another 15 patients with AC. All patients fulfilled the 2010 revised Task Force Criteria for the diagnosis of AC. Immunohistochemical analyses were performed using antibodies against Cx43, PKG, Na1.5, plakophilin-2, and N-cadherin. RESULTS: N-cadherin and desmoplakin immunoreactive signals and distribution were normal in patients with AC compared to controls. Plakophilin-2 signals were unaffected unless a plakophilin-2 mutation predicting haploinsufficiency was present. Distribution was unchanged compared to that in controls. Immunoreactive signal levels of PKG, Cx43, and Na1.5 were disturbed in 74%, 70%, and 65% of the patients, respectively. CONCLUSIONS: A reduced immunoreactive signal of PKG, Cx43, and Na1.5 at the intercalated disks can be observed in a large majority of the patients. Decreased levels of Na1.5 might contribute to arrhythmia vulnerability and, in the future, potentially could serve as a new clinically relevant tool for risk assessment strategies.
PMCID:3608196
PMID: 23178689
ISSN: 1547-5271
CID: 287712
The Intercalated Disc: A Molecular Network That Integrates Electrical Coupling, Intercellular Adhesion, and Cell Excitability
Chapter by: Cerrone, M; Agullo-Pascual, E; Delmar, M
in: Cardiac Electrophysiology: From Cell to Bedside by
pp. 215-227
ISBN: 9781455728565
CID: 1842432