Searched for: in-biosketch:yes
person:lih09
Myeloid ATG16L1 does not affect adipose tissue inflammation or body mass in mice fed high fat diet
Litwinoff, Evelyn M S; Gold, Merav Y; Singh, Karan; Hu, Jiyuan; Li, Huilin; Cadwell, Ken; Schmidt, Ann Marie
BACKGROUND:An influx of lipid-loaded macrophages characterizes visceral adipose tissue (VAT) inflammation, which is an important factor in the development of insulin resistance (IR) in obesity. Depletion of macrophage lipids accompanies increased whole body insulin sensitivity, but the underlying mechanism is unknown. Deficiency of autophagy protein ATG16L1 is associated with increases in inflammatory diseases and lipid metabolism, but the connection between ATG16L1, IR, and obesity remains elusive. We hypothesize that myeloid ATG16L1 contributes to lipid loading in macrophages and to IR. METHODS:Wild-type (WT) bone marrow derived macrophages (BMDMs) were treated with fatty acids and assessed for markers of autophagy. Myeloid-deficient Atg16l1 and littermate control male mice were fed high fat diet (HFD) or low fat diet (LFD) for 3 months starting at 8 weeks of age. Mice were assessed for body mass, fat and lean mass, glucose and insulin sensitivity, food consumption and adipose inflammation. Fluorescence-activated cell sorted VAT macrophages were assessed for lipid content and expression of autophagy related genes. RESULTS:VAT and VAT macrophages from HFD-fed WT mice did not show differences in autophagy protein and gene expression compared to tissue from LFD-fed mice. Fatty acid-treated BMDMs increased neutral lipid content but did not change autophagy protein expression. HFD-fed Atg16l1 myeloid-deficient and littermate mice demonstrated no differences in body mass, glucose or insulin sensitivity, food consumption, fat or lean mass, macrophage lipid content, or adipose tissue inflammation. CONCLUSION/CONCLUSIONS:ATG16L1 does not contribute to obesity, IR, adipose tissue inflammation or lipid loading in macrophages in mice fed HFD.
PMCID:5932285
PMID: 29103907
ISSN: 1871-403x
CID: 2907742
RAGE binds preamyloid IAPP intermediates and mediates pancreatic β cell proteotoxicity
Abedini, Andisheh; Cao, Ping; Plesner, Annette; Zhang, Jinghua; He, Meilun; Derk, Julia; Patil, Sachi A; Rosario, Rosa; Lonier, Jacqueline; Song, Fei; Koh, Hyunwook; Li, Huilin; Raleigh, Daniel P; Schmidt, Ann Marie
Islet amyloidosis is characterized by the aberrant accumulation of islet amyloid polypeptide (IAPP) in pancreatic islets, resulting in β cell toxicity, which exacerbates type 2 diabetes and islet transplant failure. It is not fully clear how IAPP induces cellular stress or how IAPP-induced toxicity can be prevented or treated. We recently defined the properties of toxic IAPP species. Here, we have identified a receptor-mediated mechanism of islet amyloidosis-induced proteotoxicity. In human diabetic pancreas and in cellular and mouse models of islet amyloidosis, increased expression of the receptor for advanced glycation endproducts (RAGE) correlated with human IAPP-induced (h-IAPP-induced) β cell and islet inflammation, toxicity, and apoptosis. RAGE selectively bound toxic intermediates, but not nontoxic forms of h-IAPP, including amyloid fibrils. The isolated extracellular ligand-binding domains of soluble RAGE (sRAGE) blocked both h-IAPP toxicity and amyloid formation. Inhibition of the interaction between h-IAPP and RAGE by sRAGE, RAGE-blocking antibodies, or genetic RAGE deletion protected pancreatic islets, β cells, and smooth muscle cells from h-IAPP-induced inflammation and metabolic dysfunction. sRAGE-treated h-IAPP Tg mice were protected from amyloid deposition, loss of β cell area, β cell inflammation, stress, apoptosis, and glucose intolerance. These findings establish RAGE as a mediator of IAPP-induced toxicity and suggest that targeting the IAPP/RAGE axis is a potential strategy to mitigate this source of β cell dysfunction in metabolic disease.
PMCID:5785261
PMID: 29337308
ISSN: 1558-8238
CID: 2916152
The Healthy Hearts and Kidneys (HHK) study: Design of a 2x2 RCT of technology-supported self-monitoring and social cognitive theory-based counseling to engage overweight people with diabetes and chronic kidney disease in multiple lifestyle changes
Sevick, Mary Ann; Woolf, Kathleen; Mattoo, Aditya; Katz, Stuart D; Li, Huilin; St-Jules, David E; Jagannathan, Ram; Hu, Lu; Pompeii, Mary Lou; Ganguzza, Lisa; Li, Zhi; Sierra, Alex; Williams, Stephen K; Goldfarb, David S
Patients with complex chronic diseases usually must make multiple lifestyle changes to limit and manage their conditions. Numerous studies have shown that education alone is insufficient for engaging people in lifestyle behavior change, and that theory-based behavioral approaches also are necessary. However, even the most motivated individual may have difficulty with making lifestyle changes because of the information complexity associated with multiple behavior changes. The goal of the current Healthy Hearts and Kidneys study was to evaluate, different mobile health (mHealth)-delivered intervention approaches for engaging individuals with type 2 diabetes (T2D) and concurrent chronic kidney disease (CKD) in behavior changes. Participants were randomized to 1 of 4 groups, receiving: (1) a behavioral counseling, (2) technology-based self-monitoring to reduce information complexity, (3) combined behavioral counseling and technology-based self-monitoring, or (4) baseline advice. We will determine the impact of randomization assignment on weight loss success and 24-hour urinary excretion of sodium and phosphorus. With this report we describe the study design, methods, and approaches used to assure information security for this ongoing clinical trial. Clinical Trials.gov Identifier: NCT02276742.
PMCID:6007843
PMID: 28867396
ISSN: 1559-2030
CID: 2688792
Diaphanous 1 (DIAPH1) is Highly Expressed in the Aged Human Medial Temporal Cortex and Upregulated in Myeloid Cells During Alzheimer's Disease
Derk, Julia; Bermudez Hernandez, Keria; Rodriguez, Moises; He, Meilun; Koh, Hyunwook; Abedini, Andisheh; Li, Huilin; Fenyo, David; Schmidt, Ann Marie
BACKGROUND:The receptor for advanced glycation end products (RAGE) is linked to cellular stress and inflammation during Alzheimer's disease (AD). RAGE signals through Diaphanous-1 (DIAPH1); however, the expression of DIAPH1 in the healthy and AD human brain has yet to be methodically addressed. OBJECTIVE:To delineate the cell- and disease-state specific expression of DIAPH1 in the human medial temporal cortex during healthy aging and AD. METHODS:We used semi-quantitative immunohistochemistry in the human medial temporal cortex paired with widefield and confocal microscopy and automated analyses to determine colocalization and relative expression of DIAPH1 with key cell markers and molecules in the brains of subjects with AD versus age-matched controls. RESULTS:We report robust colocalization of DIAPH1 with myeloid cells and increased expression during AD, which strongly correlated to increased neutral lipids and morphology of inflamed myeloid cells. DIAPH1 moderately colocalized with markers of endothelial cells, astrocytes, neurons, and oligodendrocytes. DISCUSSION/CONCLUSIONS:Our findings localize DIAPH1 particularly to myeloid cells in the CNS, especially in AD in the locations of lipid droplet accumulation, thereby implicating RAGE-DIAPH1 signaling in dysregulated lipid metabolism and morphological changes of inflamed myeloid cells in this disorder.
PMCID:6082178
PMID: 29966194
ISSN: 1875-8908
CID: 3197542
q2-longitudinal: Longitudinal and Paired-Sample Analyses of Microbiome Data
Bokulich, Nicholas A; Dillon, Matthew R; Zhang, Yilong; Rideout, Jai Ram; Bolyen, Evan; Li, Huilin; Albert, Paul S; Caporaso, J Gregory
Studies of host-associated and environmental microbiomes often incorporate longitudinal sampling or paired samples in their experimental design. Longitudinal sampling provides valuable information about temporal trends and subject/population heterogeneity, offering advantages over cross-sectional and pre-post study designs. To support the needs of microbiome researchers performing longitudinal studies, we developed q2-longitudinal, a software plugin for the QIIME 2 microbiome analysis platform (https://qiime2.org). The q2-longitudinal plugin incorporates multiple methods for analysis of longitudinal and paired-sample data, including interactive plotting, linear mixed-effects models, paired differences and distances, microbial interdependence testing, first differencing, longitudinal feature selection, and volatility analyses. The q2-longitudinal package (https://github.com/qiime2/q2-longitudinal) is open-source software released under a 3-clause Berkeley Software Distribution (BSD) license and is freely available, including for commercial use. IMPORTANCE Longitudinal sampling provides valuable information about temporal trends and subject/population heterogeneity. We describe q2-longitudinal, a software plugin for longitudinal analysis of microbiome data sets in QIIME 2. The availability of longitudinal statistics and visualizations in the QIIME 2 framework will make the analysis of longitudinal data more accessible to microbiome researchers.
PMCID:6247016
PMID: 30505944
ISSN: 2379-5077
CID: 3520192
A multivariate distance-based analytic framework for microbial interdependence association test in longitudinal study
Zhang, Yilong; Han, Sung Won; Cox, Laura M; Li, Huilin
Human microbiome is the collection of microbes living in and on the various parts of our body. The microbes living on our body in nature do not live alone. They act as integrated microbial community with massive competing and cooperating and contribute to our human health in a very important way. Most current analyses focus on examining microbial differences at a single time point, which do not adequately capture the dynamic nature of the microbiome data. With the advent of high-throughput sequencing and analytical tools, we are able to probe the interdependent relationship among microbial species through longitudinal study. Here, we propose a multivariate distance-based test to evaluate the association between key phenotypic variables and microbial interdependence utilizing the repeatedly measured microbiome data. Extensive simulations were performed to evaluate the validity and efficiency of the proposed method. We also demonstrate the utility of the proposed test using a well-designed longitudinal murine experiment and a longitudinal human study. The proposed methodology has been implemented in the freely distributed open-source R package and Python code.
PMCID:5696116
PMID: 28872698
ISSN: 1098-2272
CID: 2688742
The AGE-RAGE axis in an Arab population: The United Arab Emirates Healthy Futures (UAEHFS) pilot study
Inman, Claire K; Aljunaibi, Abdullah; Koh, Hyunwook; Abdulle, Abdishakur; Ali, Raghib; Alnaeemi, Abdullah; Al Zaabi, Eiman; Oumeziane, Naima; Al Bastaki, Marina; Al-Houqani, Mohammed; Al-Maskari, Fatma; Al Dhaheri, Ayesha; Shah, Syed M; Abdel Wareth, Laila; Al Mahmeed, Wael; Alsafar, Habiba; Al Anouti, Fatme; Al Hosani, Ayesha; Haji, Muna; Galani, Divya; O'Connor, Matthew J; Ahn, Jiyoung; Kirchhoff, Tomas; Sherman, Scott; Hayes, Richard B; Li, Huilin; Ramasamy, Ravichandran; Schmidt, Ann Marie
Aims/UNASSIGNED:The transformation of the United Arab Emirates (UAE) from a semi-nomadic to a high income society has been accompanied by increasing rates of obesity and Type 2 diabetes mellitus. We examined if the AGE-RAGE (receptor for advanced glycation endproducts) axis is associated with obesity and diabetes mellitus in the pilot phase of the UAE Healthy Futures Study (UAEHFS). Methods/UNASSIGNED:517 Emirati subjects were enrolled and plasma/serum levels of AGE, carboxy methyl lysine (CML)-AGE, soluble (s)RAGE and endogenous secretory (es)RAGE were measured along with weight, height, waist and hip circumference (WC/HC), blood pressure, HbA1c, Vitamin D levels and routine chemistries. The relationship between the AGE-RAGE axis and obesity and diabetes mellitus was tested using proportional odds models and linear regression. Results/UNASSIGNED:After covariate adjustment, AGE levels were significantly associated with diabetes status. Levels of sRAGE and esRAGE were associated with BMI and levels of sRAGE were associated with WC/HC. Conclusions/UNASSIGNED:The AGE-RAGE axis is associated with diabetes status and obesity in this Arab population. Prospective serial analysis of this axis may identify predictive biomarkers of obesity and cardiometabolic dysfunction in the UAEHFS.
PMCID:5691216
PMID: 29204365
ISSN: 2214-6237
CID: 2892882
Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes
Santos, Ruda de Luna Almeida; Bai, Lin; Singh, Pradeep K; Murakami, Naoka; Fan, Hao; Zhan, Wenhu; Zhu, Yingrong; Jiang, Xiuju; Zhang, Kaiming; Assker, Jean Pierre; Nathan, Carl F; Li, Huilin; Azzi, Jamil; Lin, Gang
Proteasome inhibitors benefit patients with multiple myeloma and B cell-dependent autoimmune disorders but exert toxicity from inhibition of proteasomes in other cells. Toxicity should be minimized by reversible inhibition of the immunoproteasome β5i subunit while sparing the constitutive β5c subunit. Here we report β5i-selective inhibition by asparagine-ethylenediamine (AsnEDA)-based compounds and present the high-resolution cryo-EM structural analysis of the human immunoproteasome. Despite inhibiting noncompetitively, an AsnEDA inhibitor binds the active site. Hydrophobic interactions are accompanied by hydrogen bonding with β5i and β6 subunits. The inhibitors are far more cytotoxic for myeloma and lymphoma cell lines than for hepatocarcinoma or non-activated lymphocytes. They block human B-cell proliferation and promote apoptotic cell death selectively in antibody-secreting B cells, and to a lesser extent in activated human T cells. Reversible, β5i-selective inhibitors may be useful for treatment of diseases involving activated or neoplastic B cells or activated T cells.
PMCID:5700161
PMID: 29167449
ISSN: 2041-1723
CID: 5428992
Diet Quality Assessed via the Healthy Eating Index – 2010 among Overweight/Obese Individuals with Type 2 Diabetes and Concurrent Chronic Kidney Disease...2017 Food & Nutrition Conference & Expo, 2017, Chicago, IL, 21–24 October 2017
Woolf, K; Ganguzza, L; Pompeii, ML; Hu, L; St-Jules, DE; Jagannathan, R; Sierra, A; Goldfarb, DS; Katz, S; Mattoo, A; Li, H; Sevick, MA
CINAHL:124776855
ISSN: 2212-2672
CID: 2735092
Oxalobacter formigenes-associated host features and microbial community structures examined using the American Gut Project
Liu, Menghan; Koh, Hyunwook; Kurtz, Zachary D; Battaglia, Thomas; PeBenito, Amanda; Li, Huilin; Nazzal, Lama; Blaser, Martin J
BACKGROUND: Increasing evidence shows the importance of the commensal microbe Oxalobacter formigenes in regulating host oxalate homeostasis, with effects against calcium oxalate kidney stone formation, and other oxalate-associated pathological conditions. However, limited understanding of O. formigenes in humans poses difficulties for designing targeted experiments to assess its definitive effects and sustainable interventions in clinical settings. We exploited the large-scale dataset from the American Gut Project (AGP) to study O. formigenes colonization in the human gastrointestinal (GI) tract and to explore O. formigenes-associated ecology and the underlying host-microbe relationships. RESULTS: In >8000 AGP samples, we detected two dominant, co-colonizing O. formigenes operational taxonomic units (OTUs) in fecal specimens. Multivariate analysis suggested that O. formigenes abundance was associated with particular host demographic and clinical features, including age, sex, race, geographical location, BMI, and antibiotic history. Furthermore, we found that O. formigenes presence was an indicator of altered host gut microbiota structure, including higher community diversity, global network connectivity, and stronger resilience to simulated disturbances. CONCLUSIONS: Through this study, we identified O. formigenes colonizing patterns in the human GI tract, potential underlying host-microbe relationships, and associated microbial community structures. These insights suggest hypotheses to be tested in future experiments. Additionally, we proposed a systematic framework to study any bacterial taxa of interest to computational biologists, using large-scale public data to yield novel biological insights.
PMCID:5571629
PMID: 28841836
ISSN: 2049-2618
CID: 2676532