Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:littmd01

Total Results:

381


Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease

Scher, Jose U; Ubeda, Carles; Artacho, Alejandro; Attur, Mukundan; Isaac, Sandrine; Reddy, Soumya M; Marmon, Shoshana; Neimann, Andrea; Brusca, Samuel; Patel, Tejas; Manasson, Julia; Pamer, Eric G; Littman, Dan R; Abramson, Steven B
OBJECTIVE: To characterize the diversity and taxonomic relative abundance of the gut microbiota in patients with never-treated, recent-onset psoriatic arthritis (PsA). METHODS: High-throughput 16S ribosomal RNA pyrosequencing was utilized to compare the community composition of gut microbiota in patients with PsA (n = 16), patients with psoriasis of the skin (n = 15), and healthy, matched control subjects (n = 17). Samples were further assessed for the presence and levels of fecal and serum secretory IgA (sIgA), proinflammatory proteins, and fatty acids. RESULTS: The gut microbiota observed in patients with PsA and patients with skin psoriasis was less diverse when compared to that in healthy controls. This could be attributed to the reduced presence of several taxa. Samples from both patient groups showed a relative decrease in abundance of Coprococcus species, while samples from PsA patients were also characterized by a significant reduction in Akkermansia, Ruminococcus, and Pseudobutyrivibrio. Supernatants of fecal samples from PsA patients revealed an increase in sIgA levels and decrease in RANKL levels. Analysis of fatty acids revealed low fecal quantities of hexanoate and heptanoate in both patients with PsA and patients with psoriasis. CONCLUSION: Patients with PsA and patients with skin psoriasis had a lower relative abundance of multiple intestinal bacteria. Although some genera were concomitantly decreased in both conditions, PsA samples had a lower abundance of reportedly beneficial taxa. This gut microbiota profile in PsA was similar to that previously described in patients with inflammatory bowel disease and was associated with changes in specific inflammatory proteins unique to this group, and distinct from that in patients with skin psoriasis and healthy controls. Thus, the role of the gut microbiome in the continuum of psoriasis-PsA pathogenesis and the associated immune response merits further study.
PMCID:4280348
PMID: 25319745
ISSN: 2326-5205
CID: 1453542

CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22

Longman, Randy S; Diehl, Gretchen E; Victorio, Daniel A; Huh, Jun R; Galan, Carolina; Miraldi, Emily R; Swaminath, Arun; Bonneau, Richard; Scherl, Ellen J; Littman, Dan R
Interleukin (IL)-22-producing group 3 innate lymphoid cells (ILC3) promote mucosal healing and maintain barrier integrity, but how microbial signals are integrated to regulate mucosal protection offered by these cells remains unclear. Here, we show that in vivo depletion of CX3CR1+ mononuclear phagocytes (MNPs) resulted in more severe colitis and death after infection with Citrobacter rodentium. This phenotype was rescued by exogenous IL-22, which was endogenously produced by ILC3 in close spatial proximity to CX3CR1+ MNPs that were dependent on MyD88 signaling. CX3CR1+ MNPs from both mouse and human tissue produced more IL-23 and IL-1beta than conventional CD103+ dendritic cells (cDCs) and were more efficient than cDCs in supporting IL-22 production in ILC3 in vitro and in vivo. Further, colonic ILC3 from patients with mild to moderate ulcerative colitis or Crohn's disease had increased IL-22 production. IBD-associated SNP gene set analysis revealed enrichment for genes selectively expressed in human intestinal MNPs. The product of one of these, TL1A, potently enhanced IL-23- and IL-1beta-induced production of IL-22 and GM-CSF by ILC3. Collectively, these results reveal a critical role for CX3CR1+ mononuclear phagocytes in integrating microbial signals to regulate colonic ILC3 function in IBD.
PMCID:4113938
PMID: 25024136
ISSN: 0022-1007
CID: 1075092

Focused specificity of intestinal T17 cells towards commensal bacterial antigens

Yang, Yi; Torchinsky, Miriam B; Gobert, Michael; Xiong, Huizhong; Xu, Mo; Linehan, Jonathan L; Alonzo, Francis; Ng, Charles; Chen, Alessandra; Lin, Xiyao; Sczesnak, Andrew; Liao, Jia-Jun; Torres, Victor J; Jenkins, Marc K; Lafaille, Juan J; Littman, Dan R
T-helper-17 (TH17) cells have critical roles in mucosal defence and in autoimmune disease pathogenesis. They are most abundant in the small intestine lamina propria, where their presence requires colonization of mice with microbiota. Segmented filamentous bacteria (SFB) are sufficient to induce TH17 cells and to promote TH17-dependent autoimmune disease in animal models. However, the specificity of TH17 cells, the mechanism of their induction by distinct bacteria, and the means by which they foster tissue-specific inflammation remain unknown. Here we show that the T-cell antigen receptor (TCR) repertoire of intestinal TH17 cells in SFB-colonized mice has minimal overlap with that of other intestinal CD4+ T cells and that most TH17 cells, but not other T cells, recognize antigens encoded by SFB. T cells with antigen receptors specific for SFB-encoded peptides differentiated into RORgammat-expressing TH17 cells, even if SFB-colonized mice also harboured a strong TH1 cell inducer, Listeria monocytogenes, in their intestine. The match of T-cell effector function with antigen specificity is thus determined by the type of bacteria that produce the antigen. These findings have significant implications for understanding how commensal microbiota contribute to organ-specific autoimmunity and for developing novel mucosal vaccines.
PMCID:4128479
PMID: 24739972
ISSN: 0028-0836
CID: 963022

Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity

van de Pavert, Serge A; Ferreira, Manuela; Domingues, Rita G; Ribeiro, Helder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F; Ibiza, Sales; Barbosa, Ines; Goverse, Gera; Labao-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R; Habani, Yasmin; Haak, Esther; Santori, Fabio R; Littman, Dan R; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J Pedro; Mebius, Reina E; Veiga-Fernandes, Henrique
The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORgammat. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.
PMCID:4932833
PMID: 24670648
ISSN: 0028-0836
CID: 867172

Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor

Parkhurst, Christopher N; Yang, Guang; Ninan, Ipe; Savas, Jeffrey N; Yates, John R 3rd; Lafaille, Juan J; Hempstead, Barbara L; Littman, Dan R; Gan, Wen-Biao
Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.
PMCID:4033691
PMID: 24360280
ISSN: 0092-8674
CID: 746582

Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis

Kruglov, Andrey A; Grivennikov, Sergei I; Kuprash, Dmitry V; Winsauer, Caroline; Prepens, Sandra; Seleznik, Gitta Maria; Eberl, Gerard; Littman, Dan R; Heikenwalder, Mathias; Tumanov, Alexei V; Nedospasov, Sergei A
Immunoglobulin A (IgA) production at mucosal surfaces contributes to protection against pathogens and controls intestinal microbiota composition. However, mechanisms regulating IgA induction are not completely defined. We show that soluble lymphotoxin alpha (sLTalpha3) produced by RORgammat(+) innate lymphoid cells (ILCs) controls T cell-dependent IgA induction in the lamina propria via regulation of T cell homing to the gut. By contrast, membrane-bound lymphotoxin beta (LTalpha1beta2) produced by RORgammat(+) ILCs is critical for T cell-independent IgA induction in the lamina propria via control of dendritic cell functions. Ablation of LTalpha in RORgammat(+) cells abrogated IgA production in the gut and altered microbiota composition. Thus, soluble and membrane-bound lymphotoxins produced by ILCs distinctly organize adaptive immune responses in the gut and control commensal microbiota composition.
PMID: 24311691
ISSN: 0036-8075
CID: 700602

Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis

Scher, Jose U; Sczesnak, Andrew; Longman, Randy S; Segata, Nicola; Ubeda, Carles; Bielski, Craig; Rostron, Tim; Cerundolo, Vincenzo; Pamer, Eric G; Abramson, Steven B; Huttenhower, Curtis; Littman, Dan R
Rheumatoid arthritis (RA) is a prevalent systemic autoimmune disease, caused by a combination of genetic and environmental factors. Animal models suggest a role for intestinal bacteria in supporting the systemic immune response required for joint inflammation. Here we performed 16S sequencing on 114 stool samples from rheumatoid arthritis patients and controls, and shotgun sequencing on a subset of 44 such samples. We identified the presence of Prevotella copri as strongly correlated with disease in new-onset untreated rheumatoid arthritis (NORA) patients. Increases in Prevotella abundance correlated with a reduction in Bacteroides and a loss of reportedly beneficial microbes in NORA subjects. We also identified unique Prevotella genes that correlated with disease. Further, colonization of mice revealed the ability of P. copri to dominate the intestinal microbiota and resulted in an increased sensitivity to chemically induced colitis. This work identifies a potential role for P. copri in the pathogenesis of RA. DOI: http://dx.doi.org/10.7554/eLife.01202.001.
PMCID:3816614
PMID: 24192039
ISSN: 2050-084x
CID: 614432

GPR15-Mediated Homing Controls Immune Homeostasis in the Large Intestine Mucosa

Kim, Sangwon V; Xiang, Wenkai V; Kwak, Changsoo; Yang, Yi; Lin, Xiyao W; Ota, Mitsuhiko; Sarpel, Umut; Rifkin, Daniel B; Xu, Ruliang; Littman, Dan R
Lymphocyte homing, which contributes to inflammation, has been studied extensively in the small intestine, but there is little known about homing to the large intestine, the site most commonly affected in inflammatory bowel disease. GPR15, an orphan G protein-coupled receptor, controlled the specific homing of T cells, particularly FOXP3+ regulatory T cells (Tregs), to the large intestine lamina propria (LILP). GPR15 expression was modulated by gut microbiota and transforming growth factor-beta1, but not by retinoic acid. GPR15-deficient mice were prone to develop more severe large intestine inflammation, which was rescued by the transfer of GPR15-sufficient Tregs. Our findings thus describe a T cell homing receptor for LILP and indicate that GPR15 plays a role in mucosal immune tolerance largely by regulating the influx of Tregs.
PMCID:3762262
PMID: 23661644
ISSN: 0036-8075
CID: 357322

A genomic regulatory element that directs assembly and function of immune-specific AP-1-IRF complexes [Meeting Abstract]

Glasmacher, Elke; Agrawal, Smita; Chang, Abraham; Murphy, Theresa; Zeng, Wenwen; Vander Lugt, Bryan; Khan, Aly; Ciofani, Maria; Spooner, Chauncey; Rutz, Sascha; Hackney, Jason; Nurieva, Roza; Escalante, Carlos; Ouyang, Wenjun; Littman, Dan; Murphy, Ken; Singh, Harinder
ISI:000322987101071
ISSN: 0022-1767
CID: 3909952

Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells

Diehl, Gretchen E; Longman, Randy S; Zhang, Jing-Xin; Breart, Beatrice; Galan, Carolina; Cuesta, Adolfo; Schwab, Susan R; Littman, Dan R
The intestinal microbiota has a critical role in immune system and metabolic homeostasis, but it must be tolerated by the host to avoid inflammatory responses that can damage the epithelial barrier separating the host from the luminal contents. Breakdown of this regulation and the resulting inappropriate immune response to commensals are thought to lead to the development of inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. We proposed that the intestinal immune system is instructed by the microbiota to limit responses to luminal antigens. Here we demonstrate in mice that, at steady state, the microbiota inhibits the transport of both commensal and pathogenic bacteria from the lumen to a key immune inductive site, the mesenteric lymph nodes (MLNs). However, in the absence of Myd88 or under conditions of antibiotic-induced dysbiosis, non-invasive bacteria were trafficked to the MLNs in a CCR7-dependent manner, and induced both T-cell responses and IgA production. Trafficking was carried out by CX(3)CR1(hi) mononuclear phagocytes, an intestinal-cell population previously reported to be non-migratory. These findings define a central role for commensals in regulating the migration to the MLNs of CX(3)CR1(hi) mononuclear phagocytes endowed with the ability to capture luminal bacteria, thereby compartmentalizing the intestinal immune response to avoid inflammation.
PMCID:3711636
PMID: 23334413
ISSN: 0028-0836
CID: 218002