Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:met260

Total Results:

132


Erratum to "Disrupted insula-based neural circuit organization and conflict interference in trauma-exposed youth" [NeuroImage Clin. 8 (2015) 516-25] [Correction]

Marusak, Hilary A; Etkin, Amit; Thomason, Moriah E
PMCID:4792853
PMID: 27014567
ISSN: 2213-1582
CID: 3149192

Amygdala responses to salient social cues vary with oxytocin receptor genotype in youth

Marusak, Hilary A; Furman, Daniella J; Kuruvadi, Nisha; Shattuck, David W; Joshi, Shantanu H; Joshi, Anand A; Etkin, Amit; Thomason, Moriah E
Depression, anxiety, and posttraumatic stress disorder are linked to altered limbic morphology, dysregulated neuroendocrine function, and heightened amygdala responses to salient social cues. Oxytocin appears to be a potent modulator of amygdala reactivity and neuroendocrine responses to psychosocial stress. Given these stress regulatory effects, there is increasing interest in understanding the role of oxytocin in vulnerability to stress-related clinical disorders. The present study examines the impact of a common functional variant within the oxytocin receptor (OXTR) gene (rs2254298) on structure and function of the amygdala in a high-risk sample of urban, low-income, minority youth with a high incidence of early life stress (ELS). Compared to G/G homozygotes, youth carrying the OXTR A-allele showed increased amygdala volume, reduced behavioral performance, and heightened amygdala response during two functional magnetic resonance imaging (fMRI) tasks that involved viewing socially-relevant face stimuli. Higher amygdala response was related to ELS in A-allele carriers but not G/G homozygotes. These findings underscore a series of relations among a common oxytocin system gene variant, ELS exposure, and structure and function of the amygdala in early life. Heightened amygdala response to salient social cues in OXTR A-allele carriers may elevate risk for emotional psychopathology by increasing amygdala involvement in disambiguating environmental cues, particularly for individuals with ELS.
PMCID:4679629
PMID: 26477647
ISSN: 1873-3514
CID: 3149172

Altered amygdala connectivity in urban youth exposed to trauma

Thomason, Moriah E; Marusak, Hilary A; Tocco, Maria A; Vila, Angela M; McGarragle, Olivia; Rosenberg, David R
Early life trauma exposure represents a potent risk factor for the development of mental illnesses such as anxiety, depression and post-traumatic stress disorder. Moreover, deleterious consequences of trauma are exacerbated in youth living in impoverished, urban environments. A priori probability maps were used to examine resting-state functional connectivity (FC) of the amygdala in 21 trauma-exposed, and 21 age- and sex-matched urban children and adolescents (youth) without histories of trauma. Intrinsic FC analyses focused on amygdala-medial prefrontal circuitry, a key emotion regulatory pathway in the brain. We discovered reduced negative amygdala-subgenual cingulate connectivity in trauma-exposed youth. Differences between groups were also identified in anterior insula and dorsal anterior cingulate to amygdala connectivity. Overall, results suggest a model in which urban-dwelling trauma-exposed youth lack negative prefrontal to amygdala connectivity that may be critical for regulation of emotional responses. Functional changes in amygdala circuitry might reflect the biological embedding of stress reactivity in early life and mediate enhanced vulnerability to stress-related psychopathology.
PMCID:4631140
PMID: 25836993
ISSN: 1749-5024
CID: 3149132

A neural substrate for behavioral inhibition in the risk for major depressive disorder

Frost Bellgowan, Julie; Molfese, Peter; Marx, Michael; Thomason, Moriah; Glen, Daniel; Santiago, Jessica; Gotlib, Ian H; Drevets, Wayne C; Hamilton, J Paul
OBJECTIVE:Behavioral inhibition (BI) is an early developing trait associated with cautiousness and development of clinical depression and anxiety. Little is known about the neural basis of BI and its predictive importance concerning risk for internalizing disorders. We looked at functional connectivity of the default-mode network (DMN) and salience network (SN), given their respective roles in self-relational and threat processing, in the risk for internalizing disorders, with an emphasis on determining the functional significance of these networks for BI. METHOD/METHODS:We used functional magnetic resonance imaging to scan, during the resting state, children and adolescents 8 to 17 years of age who were either at high familial risk (HR; n = 16) or low familial risk (LR; n = 18) for developing clinical depression and/or anxiety. Whole-brain DMN and SN functional connectivity were estimated for each participant and compared across groups. We also compared the LR and HR groups on levels of BI and anxiety, and incorporated these data into follow-up neurobehavioral correlation analyses. RESULTS:The HR group, relative to the LR group, showed significantly decreased DMN connectivity with the ventral striatum and bilateral sensorimotor cortices. Within the HR group, trait BI increased as DMN connectivity with the ventral striatum and sensorimotor cortex decreased. The HR and LR groups did not differ with respect to SN connectivity. CONCLUSION/CONCLUSIONS:Our findings show, in the risk for internalizing disorders, a negative functional relation between brain regions supporting self-relational processes and reward prediction. These findings represent a potential neural substrate for behavioral inhibition in the risk for clinical depression and anxiety.
PMID: 26407494
ISSN: 1527-5418
CID: 3855402

Childhood trauma exposure disrupts the automatic regulation of emotional processing

Marusak, Hilary A; Martin, Kayla R; Etkin, Amit; Thomason, Moriah E
Early-life trauma is one of the strongest risk factors for later emotional psychopathology. Although research in adults highlights that childhood trauma predicts deficits in emotion regulation that persist decades later, it is unknown whether neural and behavioral changes that may precipitate illness are evident during formative, developmental years. This study examined whether automatic regulation of emotional conflict is perturbed in a high-risk urban sample of trauma-exposed children and adolescents. A total of 14 trauma-exposed and 16 age-, sex-, and IQ-matched comparison youth underwent functional MRI while performing an emotional conflict task that involved categorizing facial affect while ignoring an overlying emotion word. Engagement of the conflict regulation system was evaluated at neural and behavioral levels. Results showed that trauma-exposed youth failed to dampen dorsolateral prefrontal cortex activity and engage amygdala-pregenual cingulate inhibitory circuitry during the regulation of emotional conflict, and were less able to regulate emotional conflict. In addition, trauma-exposed youth showed greater conflict-related amygdala reactivity that was associated with diminished levels of trait reward sensitivity. These data point to a trauma-related deficit in automatic regulation of emotional processing, and increase in sensitivity to emotional conflict in neural systems implicated in threat detection. Aberrant amygdala response to emotional conflict was related to diminished reward sensitivity that is emerging as a critical stress-susceptibility trait that may contribute to the emergence of mental illness during adolescence. These results suggest that deficits in conflict regulation for emotional material may underlie heightened risk for psychopathology in individuals that endure early-life trauma.
PMCID:4367470
PMID: 25413183
ISSN: 1740-634x
CID: 3149122

Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero

Thomason, Moriah E; Grove, Lauren E; Lozon, Tim A; Vila, Angela M; Ye, Yongquan; Nye, Matthew J; Manning, Janessa H; Pappas, Athina; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S; Romero, Roberto
Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI) have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC) before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development.
PMCID:4532276
PMID: 25284273
ISSN: 1878-9307
CID: 3149112

Disrupted insula-based neural circuit organization and conflict interference in trauma-exposed youth

Marusak, Hilary A; Etkin, Amit; Thomason, Moriah E
Childhood trauma exposure is a potent risk factor for psychopathology. Emerging research suggests that aberrant saliency processing underlies the link between early trauma exposure and later cognitive and socioemotional deficits that are hallmark of several psychiatric disorders. Here, we examine brain and behavioral responses during a face categorization conflict task, and relate these to intrinsic connectivity of the salience network (SN). The results demonstrate a unique pattern of SN dysfunction in youth exposed to trauma (n = 14) relative to comparison youth (n = 19) matched on age, sex, IQ, and sociodemographic risk. We find that trauma-exposed youth are more susceptible to conflict interference and this correlates with higher fronto-insular responses during conflict. Resting-state functional connectivity data collected in the same participants reveal increased connectivity of the insula to SN seed regions that is associated with diminished reward sensitivity, a critical risk/resilience trait following stress. In addition to altered intrinsic connectivity of the SN, we observed altered connectivity between the SN and default mode network (DMN) in trauma-exposed youth. These data uncover network-level disruptions in brain organization following one of the strongest predictors of illness, early life trauma, and demonstrate the relevance of observed neural effects for behavior and specific symptom dimensions. SN dysfunction may serve as a diathesis that contributes to illness and negative outcomes following childhood trauma.
PMCID:4477108
PMID: 26199869
ISSN: 2213-1582
CID: 3149142

Enhancing Cognitive Abilities with Comprehensive Training: A Large, Online, Randomized, Active-Controlled Trial

Hardy, Joseph L; Nelson, Rolf A; Thomason, Moriah E; Sternberg, Daniel A; Katovich, Kiefer; Farzin, Faraz; Scanlon, Michael
BACKGROUND:A variety of studies have demonstrated gains in cognitive ability following cognitive training interventions. However, other studies have not shown such gains, and questions remain regarding the efficacy of specific cognitive training interventions. Cognitive training research often involves programs made up of just one or a few exercises, targeting limited and specific cognitive endpoints. In addition, cognitive training studies typically involve small samples that may be insufficient for reliable measurement of change. Other studies have utilized training periods that were too short to generate reliable gains in cognitive performance. METHODS:The present study evaluated an online cognitive training program comprised of 49 exercises targeting a variety of cognitive capacities. The cognitive training program was compared to an active control condition in which participants completed crossword puzzles. All participants were recruited, trained, and tested online (N = 4,715 fully evaluable participants). Participants in both groups were instructed to complete one approximately 15-minute session at least 5 days per week for 10 weeks. RESULTS:Participants randomly assigned to the treatment group improved significantly more on the primary outcome measure, an aggregate measure of neuropsychological performance, than did the active control group (Cohen's d effect size = 0.255; 95% confidence interval = [0.198, 0.312]). Treatment participants showed greater improvements than controls on speed of processing, short-term memory, working memory, problem solving, and fluid reasoning assessments. Participants in the treatment group also showed greater improvements on self-reported measures of cognitive functioning, particularly on those items related to concentration compared to the control group (Cohen's d = 0.249; 95% confidence interval = [0.191, 0.306]). CONCLUSION/CONCLUSIONS:Taken together, these results indicate that a varied training program composed of a number of tasks targeted to different cognitive functions can show transfer to a wide range of untrained measures of cognitive performance. TRIAL REGISTRATION/BACKGROUND:ClinicalTrials.gov NCT-02367898.
PMCID:4557999
PMID: 26333022
ISSN: 1932-6203
CID: 3149162

MR venography of the fetal brain using susceptibility weighted imaging

Neelavalli, Jaladhar; Mody, Swati; Yeo, Lami; Jella, Pavan Kumar; Korzeniewski, Steven J; Saleem, Sheena; Katkuri, Yashwanth; Bahado-Singh, Ray O; Hassan, Sonia S; Haacke, E Mark; Romero, Roberto; Thomason, Moriah E
PURPOSE/OBJECTIVE:To evaluate the feasibility of performing fetal brain magnetic resonance venography using susceptibility weighted imaging (SWI). MATERIALS AND METHODS/METHODS:After obtaining informed consent, pregnant women in the second and third trimester were imaged using a modified SWI sequence. Fetal SWI acquisition was repeated when fetal or maternal motion was encountered. The median and maximum number of times an SWI sequence was repeated was four and six respectively. All SWI image data were systematically evaluated by a pediatric neuroradiologist for image quality using an ordinal scoring scheme: 1. diagnostic; 2. diagnostic with artifacts; and 3. nondiagnostic. The best score in an individual fetus was used for further statistical analysis. Visibility of venous vasculature was also scored using a dichotomous variable. A subset of SWI data was re-evaluated by the first and independently by a second pediatric neuroradiologist. Kappa coefficients were computed to assess intra-rater and inter-rater reliability. RESULTS:SWI image data from a total of 22 fetuses were analyzed. Median gestational age and interquartile range of the fetuses imaged were 32 (29.9-34.9) weeks. In 68.2% of the cases (n = 15), there was no artifact; 22.7% (n = 5) had minor artifacts and 9.1% (n = 2) of the data was of nondiagnostic quality. Cerebral venous vasculature was visible in 86.4% (n = 19) of the cases. Substantial agreement (Kappa = 0.73; 95% confidence interval 0.44-1.00)) was observed for intra-rater reliability and moderate agreement (Kappa = 0.48; 95% confidence interval 0.19-0.77) was observed for inter-rater reliability. CONCLUSION/CONCLUSIONS:It is feasible to perform fetal brain venography in humans using SWI.
PMCID:4085127
PMID: 24989457
ISSN: 1522-2586
CID: 3149102

Unraveling the Miswired Connectome: A Developmental Perspective

Di Martino, Adriana; Fair, Damien A; Kelly, Clare; Satterthwaite, Theodore D; Castellanos, F Xavier; Thomason, Moriah E; Craddock, R Cameron; Luna, Beatriz; Leventhal, Bennett L; Zuo, Xi-Nian; Milham, Michael P
The vast majority of mental illnesses can be conceptualized as developmental disorders of neural interactions within the connectome, or developmental miswiring. The recent maturation of pediatric in vivo brain imaging is bringing the identification of clinically meaningful brain-based biomarkers of developmental disorders within reach. Even more auspicious is the ability to study the evolving connectome throughout life, beginning in utero, which promises to move the field from topological phenomenology to etiological nosology. Here, we scope advances in pediatric imaging of the brain connectome as the field faces the challenge of unraveling developmental miswiring. We highlight promises while also providing a pragmatic review of the many obstacles ahead that must be overcome to significantly impact public health.
PMCID:4169187
PMID: 25233316
ISSN: 0896-6273
CID: 1317932