Searched for: in-biosketch:yes
person:ricem01
Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro
Rice ME; Cragg SJ; Greenfield SA
Somatodendritic dopamine (DA) release from neurons of the midbrain represents a nonclassical form of neuronal signaling. We assessed characteristics of DA release during electrical stimulation of the substantia nigra pars compacta (SNc) in guinea pig midbrain slices. With the use of parameters optimized for this region, we compared stimulus-induced increases in extracellular DA concentration ([DA]o) in medial and lateral SNc, ventral tegmental area (VTA), and dorsal striatum in vitro. DA release was monitored directly with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. Detection of DA in SNc was confirmed by electrochemical, pharmacological, and anatomic criteria. Voltammograms of the released substance had the same peak potentials as those of DA obtained during in vitro calibration, but different from those of the indoleamine 5-hydroxytryptamine. Similar voltammograms were also obtained in the DA-rich striatum during local electrical stimulation. Contribution from the DA metabolite 3,4-dihydroxyphenylacetic acid to somatodendritic release was negligible, as indicated by the lack of effect of the monoamine oxidase inhibitor pargyline (20 microM) on the signal. Lastly, DA voltammograms could only be elicited in regions that were subsequently determined to be positive for tyrosine hydroxylase immunoreactivity (TH-ir). The frequency dependence of stimulated DA release in SNc was determined over a range of 1-50 Hz, with a constant duration of 10 s. Release was frequency dependent up to 10 Hz, with no further increase at higher frequencies. Stimulation at 10 Hz was used in all subsequent experiments. With this paradigm, DA release in SNc was tetrodotoxin insensitive, but strongly Ca2+ dependent. Stimulated [DA]o in the midbrain was also site specific. At the midcaudal level examined, DA efflux was significantly greater in VTA (1.04 +/- 0.05 microM, mean +/- SE) than in medial SNc (0.52 +/- 0.05 microM), which in turn was higher than in lateral SNc (0.35 +/- 0.03 microM). This pattern followed the apparent density of TH-ir, which was also VTA > medial SNc > lateral SNc. This report has introduced a new paradigm for the study of somatodendritic DA release. Voltammetric recording with electrodes of 2-4 microns tip diameter permitted highly localized, direct detection of endogenous DA. The Ca2+ dependence of stimulated release indicated that the process was physiologically relevant. Moreover, the findings that somatodendritic release was frequency dependent across a range characteristic of DA cell firing rates and that stimulated [DA]o varied markedly among DA cell body regions have important implications for how dendritically released DA may function in the physiology and pathophysiology of substantia nigra and VTA
PMID: 9065854
ISSN: 0022-3077
CID: 8432
Enhanced oxidative stress in female rat brain after gonadectomy
Kume-Kick J; Ferris DC; Russo-Menna I; Rice ME
Oxidative stress, assessed by tissue ascorbate loss following ischemia, is greater in male than female rat brain. The factors mediating this gender difference are unclear. The goal of the present studies was to determine the influence of gonadal sex hormones on this difference. Three weeks prior to experiment, adult Long-Evans male and female rats were gonadectomized for comparison with controls. Ascorbate and glutathione levels were determined in brain and plasma under basal conditions and in brain after one-hour decapitation ischemia, using liquid chromatography with electrochemical detection. Basal ascorbate levels in brain were 6-9% higher in males than in females, whereas plasma levels were 100% higher in males. After gonadectomy, the gender difference in plasma ascorbate levels was lost, while the effect on basal brain levels depended upon region. Ischemia-induced losses in brain ascorbate were three-fold greater in control males compared to control females. Significant losses occurred in frontal cortex, hippocampus, and cerebellum in males during ischemia, whereas loss in females was significant in cerebellum only. After gonadectomy, increased ascorbate loss was seen in all female brain regions, indicating enhanced oxidative stress. This increase eliminated the gender difference in loss; male ascorbate loss was comparatively unaffected by gonadectomy. Glutathione levels and loss were unaffected by either gender or gonadectomy, indicating differences in regulation from that of ascorbate. These findings provide evidence for the hypothesis that protection against oxidative stress is afforded by ovarian sex hormones, thus decreasing the potential for oxidative cell damage in females compared to males
PMID: 8949921
ISSN: 0006-8993
CID: 8312
Long distance pathways of diffusion for dextran along fibre bundles in brain. Relevance for volume transmission
Bjelke, B; England, R; Nicholson, C; Rice, M E; Lindberg, J; Zoli, M; Agnati, L F; Fuxe, K
Texas Red-labelled dextran with a mol. wt of 3000 g mol-1, a marker for the extracellular space, was injected unilaterally into the neostriatum of adult rats (0.3-30 micrograms microliter-1) and its distribution evaluated 1 min to 5 h later. Diffusion in the neuropil was observed with clearance starting after 30 min. After 10-15 min strong labelling along the myelinated fibre bundles was observed in the entire neostriatum. After about 20 min the labelling along the fibres reached into the corpus callosum and the overlaying deep layers of the cerebral cortex. A marked cellular uptake and accumulation of labelled dextran was found in putative perivascular pericytes. Thus, in the living brain preferential extracellular fluid pathways for diffusion exist, especially along fibre bundles, which allow the exchange of chemical signals between two distant regions. These may represent extracellular fluid pathways for volume transmission
PMID: 7543300
ISSN: 0959-4965
CID: 145559
High levels of ascorbic acid, not glutathione, in the CNS of anoxia-tolerant reptiles contrasted with levels in anoxia-intolerant species
Rice ME; Lee EJ; Choy Y
Ascorbic acid and glutathione (GSH) are antioxidants and free radical scavengers that provide the first line of defense against oxidative damage in the CNS. Using HPLC with electrochemical detection, we determined tissue contents of these antioxidants in brain and spinal cord in species with varying abilities to tolerate anoxia, including anoxia-tolerant pond and box turtles, moderately tolerant garter snakes, anoxia-intolerant clawed frogs (Xenopus laevis), and intolerant Long-Evans hooded rats. These data were compared with ascorbate and GSH levels in selected regions of guinea pig CNS, human cortex, and values from the literature. Ascorbate levels in turtles were typically 100% higher than those in rat. Cortex, olfactory bulb, and dorsal ventricular ridge had the highest content in turtle, 5-6 mumol g-1 of tissue wet weight, which was twice that in rat cortex (2.82 +/- 0.05 mumol g-1) and threefold greater than in guinea pig cortex (1.71 +/- 0.03 mumol g-1). Regionally distinct levels (2-4 mumol g-1) were found in turtle cerebellum, optic lobe, brainstem, and spinal cord, with a decreasing anterior-to-posterior gradient. Ascorbate was lowest in white matter (optic nerve) in each species. Snake cortex and brainstem had significantly higher ascorbate levels than in rat or guinea pig, although other regions had comparable or lower levels. Frog ascorbate was generally in an intermediate range between that in rat and guinea pig. In contrast to ascorbate, GSH levels in anoxia-tolerant turtles, 2-3 mumol g-1 of tissue wet weight, were similar to those in mammalian or amphibian brain, with no consistent pattern associated with anoxia tolerance. GSH levels in pond turtle CNS were significantly higher (by 10-20%) than in rat for several regions but were generally lower than in guinea pig or frog. GSH in box turtle and snake CNS were the same or lower than in rat or guinea pig. The distribution GSH in the CNS also had a decreasing anterior-to-posterior gradient but with less variability than ascorbate: levels were similar in optic nerve, brainstem, and spinal cord. The paradoxically high levels of ascorbate in turtle brain, which has a lower rate of oxidative metabolism than mammalian, suggest that ascorbate is an essential cerebral antioxidant. High levels may have evolved to protect cells from oxidative damage when aerobic metabolism resumes after a hypoxic dive
PMID: 7891107
ISSN: 0022-3042
CID: 6726
Origin of the apparent tissue conductivity in the molecular and granular layers of the in vitro turtle cerebellum and the interpretation of current source-density analysis
Okada, Y C; Huang, J C; Rice, M E; Tranchina, D; Nicholson, C
1. We determined the origin of the apparent tissue conductivity (sigma 2) of the turtle cerebellum in vitro. 2. Application of a current with a known current density (J) along the longitudinal axis of a conductivity cell produced an electric field in the cerebellum suspended in the cell. The measured electric field (E) perpendicular to the cerebellar surface indicated a significant inhomogeneity in sigma a (= J/E) with a major discontinuity between the molecular layer (0.25 +/- 0.05 S/m, mean +/- SD) and granular layers (0.15 +/- 0.03 S/m) (n = 39). 3. This inhomogeneity was more pronounced after anoxic depolarization. The value of sigma a decreased to 0.11 +/- 0.03 and 0.040 +/- 0.008 S/m in the molecular and granular layers, respectively. The ratio of sigma a S in the two layers increased from 1.67 in the normoxic condition to 2.75 after anoxic depolarization. 4. This difference in sigma a across the two layers was present within the range of frequencies (DC to 10 kHz) studied where the phase of sigma a was small (less than +/- 2 degrees) and therefore sigma a was ohmic. 5. The inhomogeneity in sigma a was in part due to an inhomogeneity in the extracellular conductivity (sigma e) as determined from the extracellular diffusion of ionophoresed tetramethylammonium. Like sigma a, the value of sigma e was also higher in the molecular layer (0.165 S/m) than in the granular layer (0.097 S/m). The inhomogeneity in sigma e was due to a smaller tortuosity and a larger extracellular volume fraction in the molecular layer compared with the granular layer. 6. sigma a was, however, consistently higher, by approximately 50%, than sigma e. A core conductor model of the cerebellum indicated that these discrepancies between sigma a and sigma e were attributable to additional conductivity produced by a passage of the longitudinal applied current through the intracellular space of Purkinje cells and ependymal glial cells, with the glial compartment playing the dominant role. Cells with a long process and a short space constant such as the ependymal glia evidently enhance the effective 'extracellular' conductivity by serving as intracellular conduits for the applied current. The result implies that the effective sigma e may be larger than sigma e for neuronally generated currents in the turtle cerebellum because the space constant for Purkinje cells is several times greater than that for the ependymal glia and consequently Purkinje cell-generated currents travel over a long distance relative to the space constant of glial cells.(ABSTRACT TRUNCATED AT 400 WORDS)
PMID: 7983532
ISSN: 0022-3077
CID: 145560
Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro
Rice ME; Richards CD; Nedergaard S; Hounsgaard J; Nicholson C; Greenfield SA
Fast-scan cyclic voltammetry with carbon fibre microelectrodes was used to detect endogenous dopamine (DA) and 5-hydroxytryptamine (5-HT) release from three distinct regions of guinea-pig mid-brain in vitro: rostral and caudal substantia nigra (SN) and the ventral tegmental area (VTA). Previous electrophysiological studies have demonstrated that cells of the caudal SN and the VTA have similar characteristics, whereas cells in the rostral SN have distinctly different properties. In the present study, we confirmed that each region has tyrosine hydroxylase-positive neurons and determined, using high-performance liquid chromatography, that DA levels were similar in rostral and caudal SN, but lower in SN than in VTA. In each region, application of veratrine, which was shown by intracellular recordings to have a reversible depolarising action, evoked a signal attributable to DA and distinguishable from that of 5-HT. Release signals were monitored every 250 ms with a spatial resolution of less than 50 microns.l DA release was calcium-dependent and was not detectable in a catecholamine-poor area such as the cerebellum, or in mid-brain tissue pre-treated with reserpine. Within the normal mid-brain, the amount of DA released was correlated with tissue content in that it was higher in the VTA than in either region of SN. It is concluded that DA released from somato-dendritic parts of mid-brain neurons exhibits site-specific variation. This is the first report of direct monitoring of DA and 5-HT release from these regions with in situ electrodes and demonstrates the utility of fast-scan cyclic voltammetry to investigate the mechanisms and possible non-classical functions of somato-dendritic DA release
PMID: 7813678
ISSN: 0014-4819
CID: 6727
Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission
Rice ME; Okada YC; Nicholson C
1. Measurements of extracellular diffusion properties were made in three orthogonal axes of the molecular and granular layers of the isolated turtle cerebellum with the use of iontophoresis of tetramethylammonium (TMA+) combined with ion-selective microelectrodes. 2. Diffusion in the extracellular space of the molecular layer was anisotropic, that is, there was a different value for the tortuosity factor, lambda i, associated with each axis of that layer. The x- and y-axes lay in the plane parallel to the pial surface of this lissencephalic cerebellum with the x-axis in the direction of the parallel fibers. The z-axis was perpendicular this plane. The tortuosity values were lambda x = 1.44 +/- 0.01, lambda y = 1.95 +/- 0.02, and lambda z = 1.58 +/- 0.01 (mean +/- SE). By contrast, the granular layer was isotropic with a single tortuosity value, lambda Gr = 1.77 +/- 0.01. 3. These data confirm the applicability of appropriately extended Fickian equations to describe diffusion in anisotropic porous media, including brain tissue. 4. Heterogeneity between the molecular and granular layer was revealed by a striking difference in extracellular volume fraction, alpha, for each layer. In the molecular layer alpha = 0.31 +/- 0.01, whereas in the granular layer alpha = 0.22 +/- 0.01. 5. Volume fraction and tortuosity affected the time course and amplitude of extracellular TMA+ concentration after iontophoresis. This was modeled by the use of the average parameters determined experimentally, and the nonspherical pattern of diffusion in the molecular layer was compared with the spherical distribution in the granular layer and agarose gel by computing isoconcentration ellipsoids. 6. One functional consequence of these results was demonstrated by measuring local changes in [K+]o and [Ca2+]o after microiontophoresis of a cerebellar transmitter, glutamate. The ratios of ion shifts in the x- and y-axes in the granular layer were close to unity, with a ratio of 1.04 +/- 0.08 for the rise in [K+]o and 1.03 +/- 0.17 for the decrease in [Ca2+]o. In contrast, ion shifts in the molecular layer had an x:y ratio of 1.44 +/- 0.14 for the rise in [K+]o and 2.10 +/- 0.42 for the decrease in [Ca2+]o. 7. These data demonstrate that the structure of cellular aggregates can channel the migration of substances in the extracellular microenvironment, and this could be a mechanism for volume transmission of chemical signals. For example, the preferred diffusion direction of glutamate along the parallel fibers would help constrain an incoming excitatory stimulus to stay 'on-beam.'
PMID: 7507522
ISSN: 0022-3077
CID: 6495
Extracellular dopamine concentration in the retina of the clawed frog, Xenopus laevis
Witkovsky P; Nicholson C; Rice ME; Bohmaker K; Meller E
Dopamine reaches targets in the outer retina of the clawed frog (Xenopus laevis) by diffusion from a network of dopaminergic cells and processes located predominantly at the junction of inner nuclear and inner plexiform layers. We obtained values for the steady-state release, uptake, and extracellular concentration of dopamine in the retina by a combination of HPLC (with electrochemical detection), scintillation spectroscopy, and fast-scan cyclic voltammetry. Vitreal concentrations of dopamine varied from 564 +/- 109 nM in light-adapted eyes near the time of subjective dawn to 156 +/- 12 nM in dark-adapted eyes. The data are consistent with a simple model for steady-state dopamine diffusion from an appropriately sited thin-sheet source. This model was used to generate a profile of extracellular dopamine concentration as a function of retinal depth. The model predicted an increase in the dopamine concentration from the vitreous to the layer of dopaminergic cells, remaining constant from that layer to the distal tips of the photoreceptors. This prediction was borne out by comparing fast-scan voltammetric measures of dopamine at the distal tips of the receptors with the vitreal concentrations determined by HPLC using electrochemical detection
PMCID:46782
PMID: 8516316
ISSN: 0027-8424
CID: 13131
Transient extracellular volume reduction in neural lobe of rat hypophysis in response to neural stalk stimulation in vitro and its relationship to extracellular potassium
Armstrong, W E; Rice, M E
1. Using ion-sensitive microelectrodes, a transient reduction in the local volume of neural lobe extracellular space was found to accompany the elevation in extracellular potassium induced by stimulation of the neural stalk. The volume decrease and potassium increase had similar stimulus-response curves when stimulus frequency was varied from 1 to 40 Hz, with maximal response at 20 Hz. The curves for stimulus duration diverged, as a near maximal potassium response was reached in 4-16 s with a 20-Hz stimulus, while the extracellular volume decrease was maximal at 64 s. 2. The volume decrease, but not the potassium increase, was strongly inhibited by lowering bath temperature and moderately inhibited by furosemide and by lowering extracellular chloride concentration. Both the volume and the potassium response were enhanced by ouabain. 3. In conclusion, shrinkage of the local extracellular space in neural lobe during nerve activity is mediated by a metabolically active process which is only partially dependent upon extracellular chloride concentration and anion-cation co-transport, but is relatively independent of Na(+)-K+ pump activity. A transient shrinkage in extracellular space during increased neurohypophysial nerve activity would be expected to play a role in hormone diffusion, ion buffering, and extracellular current flow
PMID: 8492169
ISSN: 0022-3077
CID: 145558
Diffusion characteristics and extracellular volume fraction during normoxia and hypoxia in slices of rat neostriatum
Rice ME; Nicholson C
1. Diffusion properties of submerged, superfused slices from the rat neostriatum were measured by quantitative analysis of concentration-time profiles of tetramethylammonium (TMA+) introduced by iontophoresis. TMA+ was sensed at an ion-selective microelectrode (ISM) positioned 100-150 microns from the source pipette. Slice viability was assessed from the extracellular field potentials evoked by intrastriatal electrical stimulation. 2. Under normoxic conditions the extracellular volume fraction (alpha) was 0.21 (range 0.18-0.24), and the tortuosity (lambda) was 1.54, in slices with good field potentials. In slices with poor field potentials, alpha was 0.09-0.16. Extraction of correct alpha and lambda in the slice required evaluation of nonspecific uptake, k', which was 1 x 10(-2) s-1. 3. Slices were made hypoxic by superfusing physiological saline equilibrated with 95% N2-5% CO2 for 10-30 min. Synaptic components of field potentials were inhibited after 3-4 min in hypoxic media. In some experiments extracellular K+ concentration [( K+]o) was monitored with ISMs. During hypoxia, [K+]o rose from an average baseline of 5.1 mM to 7-10 mM. After reoxygenation, [K+]o transiently fell below the original level. 4. The average value for alpha during hypoxia was 0.13 (a 38% decrease), which was significantly different from control (P less than 0.001) and increased progressively during hypoxic exposure. In contrast, tortuosity and k' were unchanged by this treatment. 5. These data represent the first characterization of the diffusion properties of the rat striatal slice and of changes in extracellular volume fraction during hypoxia in a brain slice preparation.(ABSTRACT TRUNCATED AT 250 WORDS)
PMID: 2016641
ISSN: 0022-3077
CID: 14132