Searched for: in-biosketch:yes
person:rothee02
Super-resolution imaging reveals that loss of the C-terminus of Connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc
Agullo-Pascual, Esperanza; Lin, Xianming; Leo-Macias, Alejandra; Zhang, Mingliang; Liang, Feng-Xia; Li, Zhen; Pfenniger, Anna; Lubkemeier, Indra; Keegan, Sarah; Fenyo, David; Willecke, Klaus; Rothenberg, Eli; Delmar, Mario
AIMS: It is well-known that connexin43 (Cx43) forms gap junctions. We recently showed that Cx43 is also part of a protein interacting network that regulates excitability. Cardiac-specific truncation of Cx43 C-terminus (mutant "Cx43D378stop") led to lethal arrhythmias. Cx43D378stop localized to the intercalated disc (ID); cell-cell coupling was normal, but there was significant sodium current (INa) loss. We proposed that the microtubule plus-end is at the crux of the Cx43-INa relation. Yet, specific localization of relevant molecular players was prevented due to the resolution limit of fluorescence microscopy. Here, we use nanoscale imaging to establish: a) the morphology of clusters formed by the microtubule plus-end tracking protein "end binding 1" (EB1), b) their position, and that of sodium channel alpha-subunit NaV1.5, relative to N-cadherin rich sites, c) the role of Cx43 C-terminus on the above-mentioned parameters and on the location-specific function of INa. METHODS AND RESULTS: Super-resolution fluorescence localization microscopy in murine adult cardiomyocytes revealed EB1 and NaV1.5 as distinct clusters preferentially localized to N-cadherin-rich sites. Extent of co-localization decreased in Cx43D378stop cells. Macropatch and scanning patch clamp showed reduced INa exclusively at cell end, without changes in unitary conductance. Experiments in Cx43-modified HL1 cells confirmed the relation between Cx43, INa and microtubules. CONCLUSIONS: NaV1.5 and EB1 localization at cell end is Cx43-dependent. Cx43 is part of a molecular complex that determines capture of the microtubule plus-end at the ID, facilitating cargo delivery. These observations link excitability and electrical coupling through a common molecular mechanism.
PMCID:4296112
PMID: 25139742
ISSN: 0008-6363
CID: 1142382
Super-resolution microscopy reveals the role of CX43 in microtubule anchoring and sodium channel arrival to the intercalated disc [Meeting Abstract]
Pascual, E A; Lin, X; Pfenniger, A; Lubkemeier, I; Willecke, K; Rothenberg, E; Delmar, M
Introduction: The main function of connexins is to form gap junctions; yet, recent studies show that Cx43 is not only a gap junction protein. In fact, Cx43 is a part of a protein interacting network (the connexome), likely to regulate other functions in a gap junction-independent manner. Recently, it was reported that loss of the last five amino acids of Cx43 (Cx43D378stop) leads to lethal ventricular arrhythmias in mice. Localization of Cx43 at the membrane and electrical coupling between cells was normal. Interestingly, there was a significant loss of sodium current amplitude. These observations linked two fundamental steps in action potential propagation, excitability and electrical coupling, through a common molecular mechanism. Here, we explore the hypothesis that the microtubular network at the cell end is part of the common link. Methods: N/A Results: Functional assays: Macropatch, and super-resolution scanning patch clamp in ventricular myocytes isolated from Cx43D378stop and Cre-negative (control) mice revealed a reduction in the amplitude of sodium current exclusively at the intercalated disc (ID), without a change in channel unitary conductance. Super-resolution fluorescence microscopy: direct stochastic optical reconstruction microscopy (20 nm resolution) showed Nav1.5 clusters in close proximity (or overlapping) with N-cadherin plaques. The distance between NaV1.5 clusters and the cell end increased from 57.2+12nm, n=365 in control to 111.7+11nm, n=446 in Cx43D378stop myocytes (p<0.001), indicating that mutation Cx43D378stop reduced NaV1.5 surface expression. This coincided with separation of the microtubule plus-end protein EB1 from N-cadherin-rich cell ends, from 23.7+31.9nm, n=665 in control, to 123.5+13.5nm, n=502 in Cx43D378stop cells (p<0.05). Conclusions: Functional surface expression of NaV1.5 at the ID depends on preservation of the Cx43 C-end. Cx43 is part of a molecular complex that anchors the microtubule plus-end to the cell end, thus allowing proper delivery of its ca!
EMBASE:71427389
ISSN: 1547-5271
CID: 954252
Missense mutations in plakophilin-2 cause sodium current deficit and associate with a brugada syndrome phenotype
Cerrone, Marina; Lin, Xianming; Zhang, Mingliang; Agullo-Pascual, Esperanza; Pfenniger, Anna; Chkourko Gusky, Halina; Novelli, Valeria; Kim, Changsung; Tirasawadichai, Tiara; Judge, Daniel P; Rothenberg, Eli; Chen, Huei-Sheng Vincent; Napolitano, Carlo; Priori, Silvia G; Delmar, Mario
BACKGROUND: Brugada syndrome (BrS) primarily associates with the loss of sodium channel function. Previous studies showed features consistent with sodium current (INa) deficit in patients carrying desmosomal mutations, diagnosed with arrhythmogenic cardiomyopathy (or arrhythmogenic right ventricular cardiomyopathy). Experimental models showed correlation between the loss of expression of desmosomal protein plakophilin-2 (PKP2) and reduced INa. We hypothesized that PKP2 variants that reduce INa could yield a BrS phenotype, even without overt structural features characteristic of arrhythmogenic right ventricular cardiomyopathy. METHODS AND RESULTS: We searched for PKP2 variants in the genomic DNA of 200 patients with a BrS diagnosis, no signs of arrhythmogenic cardiomyopathy, and no mutations in BrS-related genes SCN5A, CACNa1c, GPD1L, and MOG1. We identified 5 cases of single amino acid substitutions. Mutations were tested in HL-1-derived cells endogenously expressing NaV1.5 but made deficient in PKP2 (PKP2-KD). Loss of PKP2 caused decreased INa and NaV1.5 at the site of cell contact. These deficits were restored by the transfection of wild-type PKP2, but not of BrS-related PKP2 mutants. Human induced pluripotent stem cell cardiomyocytes from a patient with a PKP2 deficit showed drastically reduced INa. The deficit was restored by transfection of wild type, but not BrS-related PKP2. Super-resolution microscopy in murine PKP2-deficient cardiomyocytes related INa deficiency to the reduced number of channels at the intercalated disc and increased separation of microtubules from the cell end. CONCLUSIONS: This is the first systematic retrospective analysis of a patient group to define the coexistence of sodium channelopathy and genetic PKP2 variations. PKP2 mutations may be a molecular substrate leading to the diagnosis of BrS.
PMCID:3954430
PMID: 24352520
ISSN: 0009-7322
CID: 836072
Missense Mutations In Plakophilin-2 Can Lead To Brugada Syndrome Phenotype By Decreasing Sodium Current And Nav1.5 Membrane Localization [Meeting Abstract]
Cerrone, Marina; Lin, Xianming; Zhang, Mingliang; Agullo-Pascual, Esperanza; Pfenniger, Anna; Gusky, Halina Chkourko; Novelli, Valeria; Kim, Changsung; Tirasawadichai, Tiara; Judge, Daniel P.; Rothenberg, Eli; Chen, Huei-Sheng Vincent; Napolitano, Carlo; Priori, Silvia G.; Delmar, Mario
ISI:000330353800027
ISSN: 0009-7330
CID: 815872
A Novel Non-canonical Role Of Cx43 In The Heart: Ensuring The Arrival Of Nav1.5 To The Intercalated Disc [Meeting Abstract]
Pascual, Esperanza Agullo; Lin, Xianming; Pfenniger, Anna; Luebkemeier, Indra; Willecke, Klaus; Rothenberg, Eli; Delmar, Mario
ISI:000330353800015
ISSN: 0009-7330
CID: 815882
FBH1 Helicase Disrupts RAD51 Filaments in Vitro and Modulates Homologous Recombination in Mammalian Cells
Simandlova, Jitka; Zagelbaum, Jennifer; Payne, Miranda J; Chu, Wai Kit; Shevelev, Igor; Hanada, Katsuhiro; Chatterjee, Sujoy; Reid, Dylan A; Liu, Ying; Janscak, Pavel; Rothenberg, Eli; Hickson, Ian D
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.
PMCID:3837158
PMID: 24108124
ISSN: 0021-9258
CID: 712542
Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque
Agullo-Pascual, Esperanza; Reid, Dylan A; Keegan, Sarah; Sidhu, Manavjeet; Fenyo, David; Rothenberg, Eli; Delmar, Mario
AIMS: Cell function requires formation of molecular clusters localized to discrete subdomains. The composition of these interactomes, and their spatial organization, cannot be discerned by conventional microscopy given the resolution constraints imposed by the diffraction limit of light ( approximately 200-300 nm). Our aims were (i) Implement single-molecule imaging and analysis tools to resolve the nano-scale architecture of cardiac myocytes. (ii) Using these tools, to map two molecules classically defined as components 'of the desmosome' and 'of the gap junction', and defined their spatial organization. METHODS AND RESULTS: We built a set-up on a conventional inverted microscope using commercially available optics. Laser illumination, reducing, and oxygen scavenging conditions were used to manipulate the blinking behaviour of individual fluorescent reporters. Movies of blinking fluorophores were reconstructed to generate subdiffraction images at approximately 20 nm resolution. With this method, we characterized clusters of connexin43 (Cx43) and of 'the desmosomal protein' plakophilin-2 (PKP2). In about half of Cx43 clusters, we observed overlay of Cx43 and PKP2 at the Cx43 plaque edge. SiRNA-mediated loss of Ankyrin-G expression yielded larger Cx43 clusters, of less regular shape, and larger Cx43-PKP2 subdomains. The Cx43-PKP2 subdomain was validated by a proximity ligation assay (PLA) and by Monte-Carlo simulations indicating an attraction between PKP2 and Cx43. CONCLUSIONS: (i) Super-resolution fluorescence microscopy, complemented with Monte-Carlo simulations and PLAs, allows the study of the nanoscale organization of an interactome in cardiomyocytes. (ii) PKP2 and Cx43 share a common hub that permits direct physical interaction. Its relevance to excitability, electrical coupling, and arrhythmogenic right ventricular cardiomyopathy, is discussed.
PMCID:3797628
PMID: 23929525
ISSN: 0008-6363
CID: 573722
Inhibitors of SCF-Skp2/Cks1 E3 Ligase Block Estrogen-Induced Growth Stimulation and Degradation of Nuclear p27kip1: Therapeutic Potential for Endometrial Cancer
Pavlides, Savvas C; Huang, Kuang-Tzu; Reid, Dylan A; Wu, Lily; Blank, Stephanie V; Mittal, Khushbakhat; Guo, Lankai; Rothenberg, Eli; Rueda, Bo; Cardozo, Timothy; Gold, Leslie I
In many human cancers, the tumor suppressor, p27(kip1) (p27), a cyclin-dependent kinase inhibitor critical to cell cycle arrest, undergoes perpetual ubiquitin-mediated proteasomal degradation by the E3 ligase complex SCF-Skp2/Cks1 and/or cytoplasmic mislocalization. Lack of nuclear p27 causes aberrant cell cycle progression, and cytoplasmic p27 mediates cell migration/metastasis. We previously showed that mitogenic 17-beta-estradiol (E2) induces degradation of p27 by the E3 ligase Skp1-Cullin1-F-Box- S phase kinase-associated protein2/cyclin dependent kinase regulatory subunit 1 in primary endometrial epithelial cells and endometrial carcinoma (ECA) cell lines, suggesting a pathogenic mechanism for type I ECA, an E2-induced cancer. The current studies show that treatment of endometrial carcinoma cells-1 (ECC-1) with small molecule inhibitors of Skp2/Cks1 E3 ligase activity (Skp2E3LIs) stabilizes p27 in the nucleus, decreases p27 in the cytoplasm, and prevents E2-induced proliferation and degradation of p27 in endometrial carcinoma cells-1 and primary ECA cells. Furthermore, Skp2E3LIs increase p27 half-life by 6 hours, inhibit cell proliferation (IC50, 14.3muM), block retinoblastoma protein (pRB) phosphorylation, induce G1 phase block, and are not cytotoxic. Similarly, using super resolution fluorescence localization microscopy and quantification, Skp2E3LIs increase p27 protein in the nucleus by 1.8-fold. In vivo, injection of Skp2E3LIs significantly increases nuclear p27 and reduces proliferation of endometrial epithelial cells by 42%-62% in ovariectomized E2-primed mice. Skp2E3LIs are specific inhibitors of proteolytic degradation that pharmacologically target the binding interaction between the E3 ligase, SCF-Skp2/Cks1, and p27 to stabilize nuclear p27 and prevent cell cycle progression. These targeted inhibitors have the potential to be an important therapeutic advance over general proteasome inhibitors for cancers characterized by SCF-Skp2/Cks1-mediated destruction of nuclear p27.
PMCID:3800755
PMID: 24035998
ISSN: 0013-7227
CID: 627252
Super-resolution microscopy to visualize the Connexin43/Plakophilin-2 complex. Structure of a molecular substrate of arvc [Meeting Abstract]
Pascual, E A; Reld, D A; Rothenberg, E; Delmar, M
Introduction: Most cases of familial arrhythmogenic right ventricular cardiomyopathy (ARVC) associate with mutations in desmosomal proteins, most commonly plakophilin-2 (PKP2). A crosstalk between PKP2 and connexin43 (Cx43) has been proposed as a pathogenic mechanism. We speculate that a) Cx43 and PKP2 are in close physical proximity, allowing for direct intermolecular interaction and b) the structure of the Cx43- PKP2 complex depends on expression of the scaffolding protein ankyrin-G (AnkG). To test these hypotheses, we implemented a novel method (direct stochastic reconstruction microscopy; dSTORM) that allows for spatial resolution of fluorescence microscopy images in the nanoscale. Methods: Neonatal rat ventricular myocytes were labeled with antibodies to Cx43 and PKP2 and imaged using a custom- made microscopy system. On-off cycles of light emission were recorded in 2000 frames, and the image reconstructed by custom-made software. Cells were treated with siRNAfor AnkG, or non-targeted constructs, and the characteristics of Cx43 and PKP2 clusters compared to control. Results: Optical resolution of dSTORM images was 20 nm. Cx43 was found in circular clusters of two predominant sizes: 13313+/-328 and 25035+226 nm^2. PKP2 clusters were of various shapes and widespread size distribution, but consistently found less than 40 nm away from a Cx43 plaque, with signals overlapping on the edges of the plaques. Loss of AnkG expression drastically altered Cx43 cluster morphology becoming less circular and of a larger dimension. Close proximity to PKP2 was maintained. Yet, the total number of PKP2 clusters was significantly decreased. Conclusion: We implemented a method that breaks the optical resolution barrier imposed by the diffraction properties of light (~300 nm), to reach a range previously reserved to electron microscopy (~20 nm). We demonstrate that PKP2 populates the edge of Cx43 plaques (the perinexus). Cx43 cluster architecture depends on AnkG expression and likely, Cx43-cytoskeletal interacti!
EMBASE:71066555
ISSN: 1547-5271
CID: 369492
Heterogeneity of ATP-sensitive K+ channels in cardiac myocytes: Enrichment at the intercalated disk [Meeting Abstract]
Hong, M; Bao, L; Kefaloyianni, E; Agullo-Pascual, E; Chkourko, H; Foster, M; Taskin, E; Reid, D A; Rothenberg, E; Delmar, M; Coetzee, W A
Ventricular KATP channels link intracellular energy metabolism to membrane excitability and contractility. We identified plakoglobin (PG) and plakophilin-2 (PKP2) as KATP channel associated proteins and investigated whether the association of KATP channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between KATP channels and PKP2 and PG in rat heart. Immunolocalization experiments demonstrated that KATP channel subunits are expressed at a higher density at the intercalated disk (ICD) in hearts, where they colocalized with PKP2 and PG. Super-resolution microscopy demonstrate that KATP channels are clustered within nanometer distances from junctional proteins. The local KATP channel density was larger at the cell end when compared to local currents recorded from the cell's center. The KATP channel unitary conductance, block by MgATP and activation by MgADP did not differ between these two locations. Whole-cell KATP channel current density was ~40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of KATP channels was absent in the PKP2 deficient mice, but the KATP channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of KATP channel distribution within a cardiac myocyte. The higher KATP channel density at the ICD implies a possible role at the intercellular junctions during cardiac ischemia
EMBASE:71151346
ISSN: 1530-6860
CID: 550862