Searched for: in-biosketch:yes
person:stoked01
Normal mode-based fitting of atomic structure into electron density maps: application to sarcoplasmic reticulum Ca-ATPase
Hinsen, Konrad; Reuter, Nathalie; Navaza, Jorge; Stokes, David L; Lacapere, Jean-Jacques
A method for the flexible docking of high-resolution atomic structures into lower resolution densities derived from electron microscopy is presented. The atomic structure is deformed by an iterative process using combinations of normal modes to obtain the best fit of the electron microscopical density. The quality of the computed structures has been evaluated by several techniques borrowed from crystallography. Two atomic structures of the SERCA1 Ca-ATPase corresponding to different conformations were used as a starting point to fit the electron density corresponding to a different conformation. The fitted models have been compared to published models obtained by rigid domain docking, and their relation to the known crystallographic structures are explored by normal mode analysis. We find that only a few number of modes contribute significantly to the transition. The associated motions involve almost exclusively rotation and translation of the cytoplasmic domains as well as displacement of cytoplasmic loops. We suggest that the movements of the cytoplasmic domains are driven by the conformational change that occurs between nonphosphorylated and phosphorylated intermediate, the latter being mimicked by the presence of vanadate at the phosphorylation site in the electron microscopy structure
PMCID:1305158
PMID: 15542555
ISSN: 0006-3495
CID: 94883
Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis
Vo-Dinh, Tuan; Yan, Fei; Stokes, David L
Surface-enhanced Raman scattering (SERS) spectroscopy is a plasmonics-based spectroscopic technique that combines modern laser spectroscopy with unique optical properties of metallic nanostructures, resulting in strongly increased Raman signals when molecules are adsorbed on or near nanometer-size structures of special metals such as gold, silver, and transition metals. This chapter provides a synopsis of the development and application of SERS-active metallic nanostructures, especially for the analysis of biologically relevant compounds. Some highlights of this chapter include reports of SERS as an immunoassay readout method, SERS gene nanoprobes, near-field scanning optical microscopy SERS probes, SERS as a tool for single-molecule detection, and SERS nanoprobes for cellular studies
PMID: 15657488
ISSN: 1064-3745
CID: 94880
A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest
Vo-Dinh, Tuan; Stokes, David L; Wabuyele, Musundi B; Martin, Matt E; Song, Joon Myong; Jagannathan, Ramesh; Michaud, Edward; Lee, Robert J; Pan, Xiaogang
PMID: 15565798
ISSN: 0739-5175
CID: 94882
The mechanics of calcium transport
Young, H S; Stokes, D L
With the recent atomic models for the sarcoplasmic reticulum Ca(2+)-ATPase in the Ca(2+)-bound state, the Ca(2+)-free, thapsigargin-inhibited state, and the Ca(2+)-free, vanadate-inhibited state, we are that much closer to understanding and animating the Ca(2+)-transport cycle. These "snapshots" of the Ca(2+)-transport cycle reveal an impressive breadth and complexity of conformational change. The cytoplasmic domains undergo rigid-body movements that couple the energy of ATP to the transport of Ca2+ across the membrane. Large-scale rearrangements in the transmembrane domain suggest that the Ca(2+)-binding sites may alternately cease to exist and reform during the transport cycle. Of the three cytoplasmic domains, the actuator (A) domain undergoes the largest movement, namely a 110 degrees rotation normal to the membrane. This domain is linked to transmembrane segments M1-M3, which undergo large rearrangements in the membrane domain. Together, these movements are a main event in Ca2+ transport, yet their significance is poorly understood. Nonetheless, inhibition or modulation of Ca(2+)-ATPase activity appears to target these conformational changes. Thapsigargin is a high-affinity inhibitor that binds to the M3 helix near Phe256, and phospholamban is a modulator of Ca(2+)-ATPase activity that has been cross-linked to M2 and M4. The purpose of this review is to postulate roles for the A domain and M1-M3 in Ca2+ transport and inhibition.
PMID: 15138745
ISSN: 0022-2631
CID: 647892
3D tomographic map of desmosome from frozen-hydrated skin sections
Hsieh, C; He, W; Marko, M; Stokes, DL
SCOPUS:4544274467
ISSN: 1431-9276
CID: 648922
Untangling desmosomal knots with electron tomography
He, Wanzhong; Cowin, Pamela; Stokes, David L
Cell adhesion by adherens junctions and desmosomes relies on interactions between cadherin molecules. However, the molecular interfaces that define molecular specificity and that mediate adhesion remain controversial. We used electron tomography of plastic sections from neonatal mouse skin to visualize the organization of desmosomes in situ. The resulting three-dimensional maps reveal individual cadherin molecules forming discrete groups and interacting through their tips. Fitting of an x-ray crystal structure for C-cadherin to these maps is consistent with a flexible intermolecular interface mediated by an exchange of amino-terminal tryptophans. This flexibility suggests a novel mechanism for generating both cis and trans interactions and for propagating these adhesive interactions along the junction
PMID: 14526082
ISSN: 1095-9203
CID: 38124
Structure and function of the calcium pump
Stokes, David L; Green, N Michael
Active transport of cations is achieved by a large family of ATP-dependent ion pumps, known as P-type ATPases. Various members of this family have been targets of structural and functional investigations for over four decades. Recently, atomic structures have been determined for Ca2+-ATPase by X-ray crystallography, which not only reveal the architecture of these molecules but also offer the opportunity to understand the structural mechanisms by which the energy of ATP is coupled to calcium transport across the membrane. This energy coupling is accomplished by large-scale conformational changes. The transmembrane domain undergoes plastic deformations under the influence of calcium binding at the transport site. Cytoplasmic domains undergo dramatic rigid-body movements that deliver substrates to the catalytic site and that establish new domain interfaces. By comparing various structures and correlating functional data, we can now begin to associate the chemical changes constituting the reaction cycle with structural changes in these domains
PMID: 12598367
ISSN: 1056-8700
CID: 48169
A structural model for the catalytic cycle of Ca(2+)-ATPase
Xu, Chen; Rice, William J; He, Wanzhong; Stokes, David L
Ca(2+)-ATPase is responsible for active transport of calcium ions across the sarcoplasmic reticulum membrane. This coupling involves an ordered sequence of reversible reactions occurring alternately at the ATP site within the cytoplasmic domains, or at the calcium transport sites within the transmembrane domain. These two sites are separated by a large distance and conformational changes have long been postulated to play an important role in their coordination. To characterize the nature of these conformational changes, we have built atomic models for two reaction intermediates and postulated the mechanisms governing the large structural changes. One model is based on fitting the X-ray crystallographic structure of Ca(2+)-ATPase in the E1 state to a new 6 A structure by cryoelectron microscopy in the E2 state. This fit indicates that calcium binding induces enormous movements of all three cytoplasmic domains as well as significant changes in several transmembrane helices. We found that fluorescein isothiocyanate displaced a decavanadate molecule normally located at the intersection of the three cytoplasmic domains, but did not affect their juxtaposition; this result indicates that our model likely reflects a native E2 conformation and not an artifact of decavanadate binding. To explain the dramatic structural effect of calcium binding, we propose that M4 and M5 transmembrane helices are responsive to calcium binding and directly induce rotation of the phosphorylation domain. Furthermore, we hypothesize that both the nucleotide-binding and beta-sheet domains are highly mobile and driven by Brownian motion to elicit phosphoenzyme formation and calcium transport, respectively. If so, the reaction cycle of Ca(2+)-ATPase would have elements of a Brownian ratchet, where the chemical reactions of ATP hydrolysis are used to direct the random thermal oscillations of an innately flexible molecule
PMID: 11829513
ISSN: 0022-2836
CID: 39718
Locating phospholamban in co-crystals with ca(2+)-atpase by cryoelectron microscopy
Young HS; Jones LR; Stokes DL
Phospholamban (PLB) is responsible for regulating Ca(2+) transport by Ca(2+)-ATPase across the sarcoplasmic reticulum of cardiac and smooth muscle. This regulation is coupled to beta-adrenergic stimulation, and dysfunction has been associated with end-stage heart failure. PLB appears to directly bind to Ca(2+)-ATPase, thus slowing certain steps in the Ca(2+) transport cycle. We have determined 3D structures from co-crystals of PLB with Ca(2+)-ATPase by cryoelectron microscopy of tubular co-crystals at 8-10 A resolution. Specifically, we have used wild-type PLB, a monomeric PLB mutant (L37A), and a pentameric PLB mutant (N27A) for co-reconstitution and have compared resulting structures with three control structures of Ca(2+)-ATPase alone. The overall molecular shape of Ca(2+)-ATPase was indistinguishable in the various reconstructions, indicating that PLB did not have any global effects on Ca(2+)-ATPase conformation. Difference maps reveal densities which we attributed to the cytoplasmic domain of PLB, though no difference densities were seen for PLB's transmembrane helix. Based on these difference maps, we propose that a single PLB molecule interacts with two Ca(2+)-ATPase molecules. Our model suggests that PLB may resist the large domain movements associated with the catalytic cycle, thus inhibiting turnover
PMCID:1301560
PMID: 11463632
ISSN: 0006-3495
CID: 21107
Structure of Na+,K+-ATPase at 11-A resolution: comparison with Ca2+-ATPase in E1 and E2 states
Rice WJ; Young HS; Martin DW; Sachs JR; Stokes DL
Na+,K+-ATPase is a heterodimer of alpha and beta subunits and a member of the P-type ATPase family of ion pumps. Here we present an 11-A structure of the heterodimer determined from electron micrographs of unstained frozen-hydrated tubular crystals. For this reconstruction, the enzyme was isolated from supraorbital glands of salt-adapted ducks and was crystallized within the native membranes. Crystallization conditions fixed Na+,K+-ATPase in the vanadate-inhibited E2 conformation, and the crystals had p1 symmetry. A large number of helical symmetries were observed, so a three-dimensional structure was calculated by averaging both Fourier-Bessel coefficients and real-space structures of data from the different symmetries. The resulting structure clearly reveals cytoplasmic, transmembrane, and extracellular regions of the molecule with densities separately attributable to alpha and beta subunits. The overall shape bears a remarkable resemblance to the E2 structure of rabbit sarcoplasmic reticulum Ca2+-ATPase. After aligning these two structures, atomic coordinates for Ca2+-ATPase were fit to Na+,K+-ATPase, and several flexible surface loops, which fit the map poorly, were associated with sequences that differ in the two pumps. Nevertheless, cytoplasmic domains were very similarly arranged, suggesting that the E2-to-E1 conformational change postulated for Ca2+-ATPase probably applies to Na+,K+-ATPase as well as other P-type ATPases
PMCID:1301410
PMID: 11325721
ISSN: 0006-3495
CID: 20699