Searched for: in-biosketch:yes
person:weisej04
Within-host competition drives selection for the capsule virulence determinant of Streptococcus pneumoniae
Lysenko, Elena S; Lijek, Rebeccah S; Brown, Sam P; Weiser, Jeffrey N
For many opportunistic pathogens, it is unclear why their virulence determinants and expression of pathogenic behavior have evolved when damage or death of their host offers no obvious selective advantage to microbial growth or survival. Many pathogens initiate interactions with their host on mucosal surfaces and must compete with other members of the microflora for the same niche. Here we explore whether competitive interactions between microbes promote the acquisition of virulence characteristics. During model murine nasal colonization, Haemophilus influenzae outcompetes another member of the local flora, Streptococcus pneumoniae, by recruiting neutrophils and stimulating the killing of complement-opsonized pneumococci. For S. pneumoniae, resistance to opsonophagocytic killing is determined by its polysaccharide capsule. Although there are many capsule types among different S. pneumoniae isolates that allow for efficient colonization, virulent pneumococci express capsules that confer resistance to opsonophagocytic clearance. Modeling of interspecies interaction predicts that these more virulent S. pneumoniae will prevail during competition with H. influenzae, even if production of a capsule is otherwise costly. Experimental colonization studies confirmed the increased survival of the more virulent S. pneumoniae type during competition. Our findings demonstrate that competition between microbes during their commensal state may underlie selection for characteristics that allow invasive disease.
PMCID:2913241
PMID: 20619820
ISSN: 0960-9822
CID: 1272472
Identification of the targets of cross-reactive antibodies induced by Streptococcus pneumoniae colonization
Roche, Aoife M; Weiser, Jeffrey N
Much of the efficacy of current pneumococcal conjugate vaccines lies in their ability to decrease carriage of vaccine serotypes in the population. Novel and more-broadly acting vaccines would also need to target carriage in order to be as effective. We have previously shown that model murine carriage of Streptococcus pneumoniae can elicit antibody-dependent immunity and can protect against a virulent heterologous challenge strain. This study set out to identify S. pneumoniae surface antigens that may elicit cross-reactive antibodies following colonization. Western blot analysis using sera from colonized mice identified the previously characterized immunogens pneumococcal surface protein A (PspA), putative proteinase maturation protein A (PpmA), and pneumococcal surface adhesin A (PsaA) as such antigens. Using flow cytometry, PspA was found to be the major target of surface-bound cross-reactive IgG in sera from TIGR4 Delta cps-colonized mice, with a modest contribution from PpmA and none from PsaA. In human sera, however, only mutants lacking PpmA were shown to have reduced binding of surface IgG compared to wild-type strains, suggesting that prior exposure to S. pneumoniae in humans may induce PpmA antibodies. We also investigated if cross-reactive antibodies induced by these antigens may be cross-protective against carriage. Despite the immunogenicity of PspA, PpmA, and PsaA, mice were still protected following colonization with mutants lacking these antigens, suggesting they are not necessary for cross-protection induced by carriage. Our findings suggest that a whole-organism approach may be needed to broadly diminish carriage.
PMCID:2863509
PMID: 20231407
ISSN: 0019-9567
CID: 1272482
Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils
Dalia, Ankur B; Standish, Alistair J; Weiser, Jeffrey N
Streptococcus pneumoniae (the pneumococcus) is a major human pathogen and a leading cause of inflammatory infections such as pneumonia and otitis media. An important mechanism for host defense against S. pneumoniae is opsonophagocytic killing by neutrophils. To persist in the human host, the pneumococcus has developed strategies to evade opsonization and subsequent neutrophil-mediated killing. Utilizing a genomic approach, we identified NanA, the major pneumococcal neuraminidase, as a factor important for resistance to opsonophagocytic killing in ex vivo killing assays using human neutrophils. The effect of NanA was shown using both type 4 (TIGR4) and type 6A clinical isolates. NanA promotes this resistance by acting in conjunction with two other surface-associated exoglycosidases, BgaA, a beta-galactosidase, and StrH, an N-acetylglucosaminidase. Experiments using human serum showed that these exoglycosidases reduced deposition of complement component C3 on the pneumococcal surface, providing a mechanism for this resistance. Additionally, we have shown that antibodies in human serum do not contribute to this phenotype. These results demonstrate that deglycosylation of a human serum glycoconjugate(s) by the combined effects of NanA, BgaA, and StrH, is important for resistance to complement deposition and subsequent phagocytic killing of S. pneumoniae.
PMCID:2863504
PMID: 20160017
ISSN: 0019-9567
CID: 1272492
Streptococcus pneumoniae resistance to complement-mediated immunity is dependent on the capsular serotype
Hyams, Catherine; Yuste, Jose; Bax, Katie; Camberlein, Emilie; Weiser, Jeffrey N; Brown, Jeremy S
Streptococcus pneumoniae strains vary considerably in the ability to cause invasive disease in humans, and this is partially associated with the capsular serotype. The S. pneumoniae capsule inhibits complement- and phagocyte-mediated immunity, and differences between serotypes in these effects on host immunity may cause some of the variation in virulence between strains. However, the considerable genetic differences between S. pneumoniae strains independent of the capsular serotype prevent an unambiguous assessment of the effects of the capsular serotype on immunity using clinical isolates. We have therefore used capsular serotype-switched TIGR4 mutant strains to investigate the effects of the capsular serotype on S. pneumoniae interactions with complement. Flow cytometry assays demonstrated large differences in C3b/iC3b deposition on opaque-phase variants of TIGR4(-)+4, +6A, +7F, and +23F strains even though the thicknesses of the capsule layers were similar. There was increased C3b/iC3b deposition on TIGR4(-)+6A and +23F strains compared to +7F and +4 strains, and these differences persisted even in serum depleted of immunoglobulin G. Neutrophil phagocytosis of the TIGR4(-)+6A and +23F strains was also increased, but only in the presence of complement, showing that the effects of the capsular serotype on C3b/iC3b deposition are functionally significant. In addition, the virulence of the TIGR4(-)+6A and +23F strains was reduced in a mouse model of sepsis. These data demonstrate that resistance to complement-mediated immunity can vary with the capsular serotype independently of antibody and of other genetic differences between strains. This might be one mechanism by which the capsular serotype can affect the relative invasiveness of different S. pneumoniae strains.
PMCID:2812205
PMID: 19948838
ISSN: 0019-9567
CID: 1272502
The pneumococcus: why a commensal misbehaves
Weiser, Jeffrey N
Several characteristics of Streptococcus pneumoniae (pneumococcus) combine to make it a particularly problematic pathogen. Firstly, the pneumococcus has the capacity to cause disease through the expression of virulence factors such as its polysaccharide capsule and pore-forming toxin. In addition, the pneumococcus is highly adaptable as demonstrated by its ability to acquire and disseminate resistance to multiple antibiotics. Although the pneumococcus is a major cause of disease, the organism is most commonly an "asymptomatic" colonizer of its human host (the carrier state), with transmission occurring exclusively from this reservoir of commensal organisms. Thus, it is unclear how the organism's virulence and adaptability promote its persistence or host to host spread during its carrier state. This review summarizes current understanding of how these characteristics may contribute to the commensal lifestyle of the pneumococcus.
PMCID:4487619
PMID: 19898768
ISSN: 0946-2716
CID: 1272512
Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
Clarke, Thomas B; Davis, Kimberly M; Lysenko, Elena S; Zhou, Alice Y; Yu, Yimin; Weiser, Jeffrey N
Humans are colonized by a large and diverse bacterial flora (the microbiota) essential for the development of the gut immune system. A broader role for the microbiota as a major modulator of systemic immunity has been proposed; however, evidence and a mechanism for this role have remained elusive. We show that the microbiota are a source of peptidoglycan that systemically primes the innate immune system, enhancing killing by bone marrow-derived neutrophils of two major pathogens: Streptococcus pneumoniae and Staphylococcus aureus. This requires signaling via the pattern recognition receptor nucleotide-binding, oligomerization domain-containing protein-1 (Nod1, which recognizes meso-diaminopimelic acid (mesoDAP)-containing peptidoglycan found predominantly in Gram-negative bacteria), but not Nod2 (which detects peptidoglycan found in Gram-positive and Gram-negative bacteria) or Toll-like receptor 4 (Tlr4, which recognizes lipopolysaccharide). We show translocation of peptidoglycan from the gut to neutrophils in the bone marrow and show that peptidoglycan concentrations in sera correlate with neutrophil function. In vivo administration of Nod1 ligands is sufficient to restore neutrophil function after microbiota depletion. Nod1(-/-) mice are more susceptible than wild-type mice to early pneumococcal sepsis, demonstrating a role for Nod1 in priming innate defenses facilitating a rapid response to infection. These data establish a mechanism for systemic immunomodulation by the microbiota and highlight potential adverse consequences of microbiota disruption by broad-spectrum antibiotics on innate immune defense to infection.
PMCID:4497535
PMID: 20081863
ISSN: 1078-8956
CID: 1272522
Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin
Bachman, Michael A; Miller, Virginia L; Weiser, Jeffrey N
Nasal colonization by both gram-positive and gram-negative pathogens induces expression of the innate immune protein lipocalin 2 (Lcn2). Lcn2 binds and sequesters the iron-scavenging siderophore enterobactin (Ent), preventing bacterial iron acquisition. In addition, Lcn2 bound to Ent induces release of IL-8 from cultured respiratory cells. As a countermeasure, pathogens of the Enterobacteriaceae family such as Klebsiella pneumoniae produce additional siderophores such as yersiniabactin (Ybt) and contain the iroA locus encoding an Ent glycosylase that prevents Lcn2 binding. Whereas the ability of Lcn2 to sequester iron is well described, the ability of Lcn2 to induce inflammation during infection is unknown. To study each potential effect of Lcn2 on colonization, we exploited K. pneumoniae mutants that are predicted to be susceptible to Lcn2-mediated iron sequestration (iroA ybtS mutant) or inflammation (iroA mutant), or to not interact with Lcn2 (entB mutant). During murine nasal colonization, the iroA ybtS double mutant was inhibited in an Lcn2-dependent manner, indicating that the iroA locus protects against Lcn2-mediated growth inhibition. Since the iroA single mutant was not inhibited, production of Ybt circumvents the iron sequestration effect of Lcn2 binding to Ent. However, colonization with the iroA mutant induced an increased influx of neutrophils compared to the entB mutant. This enhanced neutrophil response to Ent-producing K. pneumoniae was Lcn2-dependent. These findings suggest that Lcn2 has both pro-inflammatory and iron-sequestering effects along the respiratory mucosa in response to bacterial Ent. Therefore, Lcn2 may represent a novel mechanism of sensing microbial metabolism to modulate the host response appropriately.
PMCID:2757716
PMID: 19834550
ISSN: 1553-7366
CID: 1272532
Human neutrophils kill Streptococcus pneumoniae via serine proteases
Standish, Alistair J; Weiser, Jeffrey N
Neutrophils, or polymorphonuclear leukocytes, comprise a crucial component of innate immunity, controlling bacterial and fungal infection through a combination of both oxidative and nonoxidative mechanisms. Indeed, neutrophils are believed to play an important role in controlling infection caused by the major human pathogen Streptococcus pneumoniae. However, the method by which neutrophils kill the pneumococcus as well as other Gram-positive bacteria, is not fully understood. We investigated human neutrophil killing of the pneumococcus in a complement-dependent opsonophagocytic assay. In contrast to other Gram-positive organisms, inhibition of the NADPH oxidase did not affect killing of S. pneumoniae. Supernatant from degranulated neutrophils killed the pneumococcus, suggesting a role for granular products. When neutrophil granule proteases were inhibited with either a protease mixture, or specific serine protease inhibitors 4-(2-Aminoethyl)benzenesulfonylfluoride and diisopropylfluorophosphate, killing by neutrophils was inhibited in a manner that correlated with increased intracellular survival. All three compounds inhibited intracellular activity of the three major neutrophil serine proteases: elastase, cathepsin G, and proteinase 3. Additionally, purified elastase and cathepsin G were sufficient to kill S. pneumoniae in a serine protease dependent-manner in in vitro assays. Inhibition studies using specific inhibitors of these serine proteases suggested that while each serine protease is sufficient to kill the pneumococcus, none is essential. Our findings show that Gram-positive pathogens are killed by human neutrophils via different mechanisms involving serine proteases.
PMID: 19620298
ISSN: 0022-1767
CID: 1272542
Natural antibody to conserved targets of Haemophilus influenzae limits colonization of the murine nasopharynx
Zola, Tracey A; Lysenko, Elena S; Weiser, Jeffrey N
Nasopharyngeal colonization represents the initial interaction between Haemophilus influenzae and its human host. Factors that influence bacterial carriage likely affect transmission and incidence of infection. Therefore, we investigated host factors involved in limiting H. influenzae colonization in BALB/c mice, as colonization can be established in this genetic background. Unlike what is observed in the C57BL/6 background, initial colonization of BALB/c mice was mainly limited by adaptive immune components. This effect on colonization did not require either CD4- or CD8-positive T cells. Instead, initial colonization by genetically diverse strains was limited by preexisting natural antibody with a lesser contribution of complement activity and the presence of neutrophils. Natural serum immunoglobulin from mice was able to bind to the bacterial surface and exhibited complement-dependent bactericidal activity against these genetically diverse H. influenzae strains. Moreover, natural immunoglobulin G (IgG) recognizing these strains was detected at the nasopharyngeal mucosal surface. This antibody-mediated effect required exposure to the normal mouse microbial flora, since mice raised under germfree (GF) conditions showed increased levels of H. influenzae colonization that were not limited by adaptive immunity. In addition, serum IgG from GF mice exhibited less surface binding to H. influenzae, suggesting that natural antibody, induced through prior exposure to the microbial flora, mediated the observed reduction in initial colonization. The broad effect of natural IgG against genetically diverse isolates suggests the presence of conserved species-wide protective targets of antibody.
PMCID:2715656
PMID: 19451240
ISSN: 0019-9567
CID: 1272552
Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice
Zhang, Zhe; Clarke, Thomas B; Weiser, Jeffrey N
Microbial colonization of mucosal surfaces may be an initial event in the progression to disease, and it is often a transient process. For the extracellular pathogen Streptococcus pneumoniae studied in a mouse model, nasopharyngeal carriage is eliminated over a period of weeks and requires cellular rather than humoral immunity. Here, we demonstrate that primary infection led to TLR2-dependent recruitment of monocyte/macrophages into the upper airway lumen, where they engulfed pneumococci. Pharmacologic depletion of luminal monocyte/macrophages by intranasal instillation of liposomal clodronate diminished pneumococcal clearance. Efficient clearance of colonization required TLR2 signaling to generate a population of pneumococcal-specific IL-17-expressing CD4+ T cells. Depletion of either IL-17A or CD4+ T cells was sufficient to block the recruitment of monocyte/macrophages that allowed for effective late pneumococcal clearance. In contrast with naive mice, previously colonized mice showed enhanced early clearance that correlated with a more robust influx of luminal neutrophils. As for primary colonization, these cellular responses required Th17 immunity. Our findings demonstrate that monocyte/macrophages and neutrophils recruited to the mucosal surface are key effectors in clearing primary and secondary bacterial colonization, respectively.
PMCID:2701860
PMID: 19509469
ISSN: 0021-9738
CID: 1272562