Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:wongk11

Total Results:

348


CXCR7 reactivates ERK signaling to promote resistance to EGFR kinase inhibitors in NSCLC

Becker, Jeffrey H; Gao, Yandi; Soucheray, Margaret; Pulido, Ines; Kikuchi, Eiki; Rodríguez, María L; Gandhi, Rutu; Lafuente-Sanchis, Aranzazu; Aupí, Miguel; Alcácer Fernández-Coronado, Javier; Martín-Martorell, Paloma; Cremades, Antonio; Galbis-Caravajal, José M; Alcácer, Javier; Christensen, Camilla L; Simms, Patricia; Hess, Ashley; Asahina, Hajime; Kahle, Michael P; Al-Shahrour, Fatima; Borgia, Jeffrey A; Lahoz, Agustín; Insa, Amelia; Juan, Oscar; Janne, Pasi A; Wong, Kwok-Kin; Carretero, Julian; Shimamura, Takeshi
Although EGFR mutant-selective TKIs are clinically effective, acquired resistance can occur by reactivating ERK. We show using in vitro models of acquired EGFR TKI resistance with a mesenchymal phenotype that CXCR7, an atypical GPCR, activates the MAPK-ERK pathway via β-arrestin. Depletion of CXCR7 inhibited the MAPK pathway, significantly attenuated EGFR TKI resistance and resulted in mesenchymal to epithelial transition. CXCR7 overexpression was essential in reactivation of ERK1/2 for the generation of EGFR TKI resistant persister cells. Many NSCLC patients harboring an EGFR kinase domain mutation, who progressed on EGFR inhibitors, demonstrated increased CXCR7 expression. These data suggest that CXCR7 inhibition could considerably delay and prevent the emergence of acquired EGFR TKI resistance in EGFR mutant NSCLC.
PMID: 31273063
ISSN: 1538-7445
CID: 3968292

The combined effect of FGFR inhibition and PD-1 blockade promotes tumor-intrinsic induction of antitumor immunity

Palakurthi, Sangeetha; Kuraguchi, Mari; Zacharek, Sima J; Zudaire, Enrique; Huang, Wei; Bonal, Dennis M; Liu, Jeffrey; Dhaneshwar, Abha; Depeaux, Kristin; Gowaski, Martha R; Bailey, Dyane; Regan, Samuel N; Ivanova, Elena; Ferrante, Catherine; English, Jessie M; Khosla, Aditya; Beck, Andrew H; Rytlewski, Julie A; Sanders, Catherine; Laquerre, Sylvie; Bittinger, Mark A; Kirschmeier, Paul T; Packman, Kathryn; Janne, Pasi A; Moy, Christopher; Wong, Kwok-Kin; Verona, Raluca I; Lorenzi, Matthew V
The success of targeted or immune therapies is often hampered by the emergence of resistance and/or clinical benefit in only a subset of patients. We hypothesized that combining targeted therapy with immune modulation would show enhanced antitumor responses. Here, we explored the combination potential of erdafitinib, a fibroblast growth factor receptor (FGFR) inhibitor under clinical development, with PD-1 blockade in an autochthonous FGFR2K660N/p53mut lung cancer mouse model. Erdafitinib monotherapy treatment resulted in substantial tumor control but no significant survival benefit. Although anti-PD-1 alone was ineffective, the erdafitinib and anti-PD-1 combination induced significant tumor regression and improved survival. For both erdafitinib monotherapy and combination treatments, tumor control was accompanied by tumor-intrinsic, FGFR pathway inhibition, increased T-cell infiltration, decreased regulatory T cells, and downregulation of PD-L1 expression on tumor cells. These effects were not observed in a KRASG12C mutant genetically engineered mouse model (GEMM), which is insensitive to FGFR inhibition, indicating that the immune changes mediated by erdafitinib may be initiated as a consequence of tumor cell killing. A decreased fraction of tumor-associated macrophages also occurred but only in combination-treated tumors. Treatment with erdafitinib decreased TCR clonality, reflecting a broadening of the TCR repertoire induced by tumor cell death, whereas combination with anti-PD-1 led to increased TCR clonality, suggesting a more focused antitumor T-cell response. Our results showed that the combination of erdafitinib and anti-PD-1 drives expansion of T-cell clones and immunological changes in the tumor microenvironment to support enhanced antitumor immunity and survival.
PMID: 31331945
ISSN: 2326-6074
CID: 3987902

Innate αβ T cells Mediate Antitumor Immunity by Orchestrating Immunogenic Macrophage Programming

Hundeyin, Mautin; Kurz, Emma; Mishra, Ankita; Kochen Rossi, Juan Andres; Liudahl, Shannon M; Leis, Kenna R; Mehrotra, Harshita; Kim, Mirhee; Torres, Luisana E; Ogunsakin, Adesola; Link, Jason; Sears, Rosalie C; Sivagnanam, Shamilene; Goecks, Jeremy; Islam, Km Sadeq; Dolgalev, Igor; Savadkar, Shivraj; Wang, Wei; Aykut, Berk; Leinwand, Joshua; Diskin, Brian; Adam, Salma; Israr, Muhammad; Gelas, Maeliss; Lish, Justin; Chin, Kathryn; Farooq, Mohammad Saad; Wadowski, Benjamin; Wu, Jingjing; Shah, Suhagi; Adeegbe, Dennis O; Pushalkar, Smruti; Vasudevaraja, Varshini; Saxena, Deepak; Wong, Kwok-Kin; Coussens, Lisa M; Miller, George
Unconventional T lymphocyte populations are emerging as important regulators of tumor immunity. Despite this, the role of TCRαβ+CD4-CD8-NK1.1- innate αβ T-cells (iαβTs) in pancreatic ductal adenocarcinoma (PDA) has not been explored. We found that iαβTs represent ~10% of T-lymphocytes infiltrating PDA in mice and humans. Intra-tumoral iαβTs express a distinct TCR-repertoire and profoundly immunogenic phenotype compared to their peripheral counterparts and conventional lymphocytes. iαβTs comprised ~75% of the total intra-tumoral IL-17+ cells. Moreover, iαβT cell adoptive transfer is protective in both murine models of PDA and human organotypic systems. We show iαβT cells induce a CCR5-dependent immunogenic macrophage reprogramming, thereby enabling marked CD4+ and CD8+ T cell expansion/activation and tumor protection. Collectively, iαβTs govern fundamental intra-tumoral crosstalk between innate and adaptive immune populations and are attractive therapeutic targets.
PMID: 31266770
ISSN: 2159-8290
CID: 3968062

BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells

Debruyne, David N; Dries, Ruben; Sengupta, Satyaki; Seruggia, Davide; Gao, Yang; Sharma, Bandana; Huang, Hao; Moreau, Lisa; McLane, Michael; Day, Daniel S; Marco, Eugenio; Chen, Ting; Gray, Nathanael S; Wong, Kwok-Kin; Orkin, Stuart H; Yuan, Guo-Cheng; Young, Richard A; George, Rani E
The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements1,2. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation3,4 or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL)6, is overexpressed in several cancers7-9, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma10 cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS-to promote regulatory chromatin interactions that support specific cancer phenotypes.
PMID: 31391581
ISSN: 1476-4687
CID: 4034372

Author Correction: A systems biology pipeline identifies regulatory networks for stem cell engineering

Kinney, Melissa A; Vo, Linda T; Frame, Jenna M; Barragan, Jessica; Conway, Ashlee J; Li, Shuai; Wong, Kwok-Kin; Collins, James J; Cahan, Patrick; North, Trista E; Lauffenburger, Douglas A; Daley, George Q
In the version of this article initially published, the second NIH grant "R24-DK49216" to author George Q. Daley contained an error. The grant number should have read U54DK110805. The error has been corrected in the HTML and PDF versions of the article.
PMID: 31312048
ISSN: 1546-1696
CID: 3977842

Correction to: Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop

Bedognetti, Davide; Ceccarelli, Michele; Galluzzi, Lorenzo; Lu, Rongze; Palucka, Karolina; Samayoa, Josue; Spranger, Stefani; Warren, Sarah; Wong, Kwok-Kin; Ziv, Elad; Chowell, Diego; Coussens, Lisa M; De Carvalho, Daniel D; DeNardo, David G; Galon, Jérôme; Kaufman, Howard L; Kirchhoff, Tomas; Lotze, Michael T; Luke, Jason J; Minn, Andy J; Politi, Katerina; Shultz, Leonard D; Simon, Richard; Thórsson, Vésteinn; Weidhaas, Joanne B; Ascierto, Maria Libera; Ascierto, Paolo Antonio; Barnes, James M; Barsan, Valentin; Bommareddy, Praveen K; Bot, Adrian; Church, Sarah E; Ciliberto, Gennaro; De Maria, Andrea; Draganov, Dobrin; Ho, Winson S; McGee, Heather M; Monette, Anne; Murphy, Joseph F; Nisticò, Paola; Park, Wungki; Patel, Maulik; Quigley, Michael; Radvanyi, Laszlo; Raftopoulos, Harry; Rudqvist, Nils-Petter; Snyder, Alexandra; Sweis, Randy F; Valpione, Sara; Zappasodi, Roberta; Butterfield, Lisa H; Disis, Mary L; Fox, Bernard A; Cesano, Alessandra; Marincola, Francesco M
Following publication of the original article [1], the author reported that an author name, Roberta Zappasodi, was missed in the authorship list.
PMID: 31272507
ISSN: 2051-1426
CID: 3968252

Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor

To, Ciric; Jang, Jaebong; Chen, Ting; Park, Eunyoung; Mushajiang, Mierzhati; De Clercq, Dries J H; Xu, Man; Wang, Stephen; Cameron, Michael D; Heppner, David E; Shin, Bo Hee; Gero, Thomas W; Yang, Annan; Dahlberg, Suzanne E; Wong, Kwok-Kin; Eck, Michael J; Gray, Nathanael S; Jänne, Pasi A
Allosteric kinase inhibitors offer a potentially complementary therapeutic strategy to ATP-competitive kinase inhibitors due to their distinct sites of target binding. In this study, we identify and study a mutant-selective EGFR allosteric inhibitor, JBJ-04-125-02, which as a single agent can inhibit cell proliferation and EGFRL858R/T790M/C797S signaling in vitro and in vivo. However, increased EGFR dimer formation limits treatment efficacy and leads to drug resistance. Remarkably, osimertinib, an ATP-competitive covalent EGFR inhibitor, uniquely and significantly enhances the binding of JBJ-04-125-02 for mutant EGFR. The combination of osimertinib and JBJ-04-125-02 results in an increase in apoptosis, a more effective inhibition of cellular growth, and an increased efficacy in vitro and in vivo compared with either single agent alone. Collectively, our findings suggest that the combination of a covalent mutant-selective ATP-competitive inhibitor and an allosteric EGFR inhibitor may be an effective therapeutic approach for patients with EGFR-mutant lung cancer. SIGNIFICANCE: The clinical efficacy of EGFR tyrosine kinase inhibitors (TKI) in EGFR-mutant lung cancer is limited by acquired drug resistance, thus highlighting the need for alternative strategies to inhibit EGFR. Here, we identify a mutant EGFR allosteric inhibitor that is effective as a single agent and in combination with the EGFR TKI osimertinib.This article is highlighted in the In This Issue feature, p. 813.
PMCID:6664433
PMID: 31092401
ISSN: 2159-8290
CID: 4967652

A systems biology pipeline identifies regulatory networks for stem cell engineering

Kinney, Melissa A; Vo, Linda T; Frame, Jenna M; Barragan, Jessica; Conway, Ashlee J; Li, Shuai; Wong, Kwok-Kin; Collins, James J; Cahan, Patrick; North, Trista E; Lauffenburger, Douglas A; Daley, George Q
A major challenge for stem cell engineering is achieving a holistic understanding of the molecular networks and biological processes governing cell differentiation. To address this challenge, we describe a computational approach that combines gene expression analysis, previous knowledge from proteomic pathway informatics and cell signaling models to delineate key transitional states of differentiating cells at high resolution. Our network models connect sparse gene signatures with corresponding, yet disparate, biological processes to uncover molecular mechanisms governing cell fate transitions. This approach builds on our earlier CellNet and recent trajectory-defining algorithms, as illustrated by our analysis of hematopoietic specification along the erythroid lineage, which reveals a role for the EGF receptor family member, ErbB4, as an important mediator of blood development. We experimentally validate this prediction and perturb the pathway to improve erythroid maturation from human pluripotent stem cells. These results exploit an integrative systems perspective to identify new regulatory processes and nodes useful in cell engineering.
PMID: 31267104
ISSN: 1546-1696
CID: 3968072

Toward a comprehensive view of cancer immune responsiveness: a synopsis from the SITC workshop

Bedognetti, Davide; Ceccarelli, Michele; Galluzzi, Lorenzo; Lu, Rongze; Palucka, Karolina; Samayoa, Josue; Spranger, Stefani; Warren, Sarah; Wong, Kwok-Kin; Ziv, Elad; Chowell, Diego; Coussens, Lisa M; De Carvalho, Daniel D; DeNardo, David G; Galon, Jérôme; Kaufman, Howard L; Kirchhoff, Tomas; Lotze, Michael T; Luke, Jason J; Minn, Andy J; Politi, Katerina; Shultz, Leonard D; Simon, Richard; Thórsson, Vésteinn; Weidhaas, Joanne B; Ascierto, Maria Libera; Ascierto, Paolo Antonio; Barnes, James M; Barsan, Valentin; Bommareddy, Praveen K; Bot, Adrian; Church, Sarah E; Ciliberto, Gennaro; De Maria, Andrea; Draganov, Dobrin; Ho, Winson S; McGee, Heather M; Monette, Anne; Murphy, Joseph F; Nisticò, Paola; Park, Wungki; Patel, Maulik; Quigley, Michael; Radvanyi, Laszlo; Raftopoulos, Harry; Rudqvist, Nils-Petter; Snyder, Alexandra; Sweis, Randy F; Valpione, Sara; Butterfield, Lisa H; Disis, Mary L; Fox, Bernard A; Cesano, Alessandra; Marincola, Francesco M
Tumor immunology has changed the landscape of cancer treatment. Yet, not all patients benefit as cancer immune responsiveness (CIR) remains a limitation in a considerable proportion of cases. The multifactorial determinants of CIR include the genetic makeup of the patient, the genomic instability central to cancer development, the evolutionary emergence of cancer phenotypes under the influence of immune editing, and external modifiers such as demographics, environment, treatment potency, co-morbidities and cancer-independent alterations including immune homeostasis and polymorphisms in the major and minor histocompatibility molecules, cytokines, and chemokines. Based on the premise that cancer is fundamentally a disorder of the genes arising within a cell biologic process, whose deviations from normality determine the rules of engagement with the host's response, the Society for Immunotherapy of Cancer (SITC) convened a task force of experts from various disciplines including, immunology, oncology, biophysics, structural biology, molecular and cellular biology, genetics, and bioinformatics to address the complexity of CIR from a holistic view. The task force was launched by a workshop held in San Francisco on May 14-15, 2018 aimed at two preeminent goals: 1) to identify the fundamental questions related to CIR and 2) to create an interactive community of experts that could guide scientific and research priorities by forming a logical progression supported by multiple perspectives to uncover mechanisms of CIR. This workshop was a first step toward a second meeting where the focus would be to address the actionability of some of the questions identified by working groups. In this event, five working groups aimed at defining a path to test hypotheses according to their relevance to human cancer and identifying experimental models closest to human biology, which include: 1) Germline-Genetic, 2) Somatic-Genetic and 3) Genomic-Transcriptional contributions to CIR, 4) Determinant(s) of Immunogenic Cell Death that modulate CIR, and 5) Experimental Models that best represent CIR and its conversion to an immune responsive state. This manuscript summarizes the contributions from each group and should be considered as a first milestone in the path toward a more contemporary understanding of CIR. We appreciate that this effort is far from comprehensive and that other relevant aspects related to CIR such as the microbiome, the individual's recombined T cell and B cell receptors, and the metabolic status of cancer and immune cells were not fully included. These and other important factors will be included in future activities of the taskforce. The taskforce will focus on prioritization and specific actionable approach to answer the identified questions and implementing the collaborations in the follow-up workshop, which will be held in Houston on September 4-5, 2019.
PMID: 31113486
ISSN: 2051-1426
CID: 3920522

Pulsatile MEK Inhibition Improves Anti-tumor Immunity and T Cell Function in Murine Kras Mutant Lung Cancer

Choi, Hyejin; Deng, Jiehui; Li, Shuai; Silk, Tarik; Dong, Lauren; Brea, Elliott J; Houghton, Sean; Redmond, David; Zhong, Hong; Boiarsky, Jonathan; Akbay, Esra A; Smith, Paul D; Merghoub, Taha; Wong, Kwok-Kin; Wolchok, Jedd D
KRAS is one of the driver oncogenes in non-small-cell lung cancer (NSCLC) but remains refractory to current modalities of targeted pathway inhibition, which include inhibiting downstream kinase MEK to circumvent KRAS activation. Here, we show that pulsatile, rather than continuous, treatment with MEK inhibitors (MEKis) maintains T cell activation and enables their proliferation. Two MEKis, selumetinib and trametinib, induce T cell activation with increased CTLA-4 expression and, to a lesser extent, PD-1 expression on T cells in vivo after cyclical pulsatile MEKi treatment. In addition, the pulsatile dosing schedule alone shows superior anti-tumor effects and delays the emergence of drug resistance. Furthermore, pulsatile MEKi treatment combined with CTLA-4 blockade prolongs survival in mice bearing tumors with mutant Kras. Our results set the foundation and show the importance of a combinatorial therapeutic strategy using pulsatile targeted therapy together with immunotherapy to optimally enhance tumor delay and promote long-term anti-tumor immunity.
PMID: 30995478
ISSN: 2211-1247
CID: 3810572