Searched for: in-biosketch:yes
person:chaom01
Identifying transient protein-protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry
Darie, Costel C; Deinhardt, Katrin; Zhang, Guoan; Cardasis, Helene S; Chao, Moses V; Neubert, Thomas A
Receptor tyrosine kinases (RTKs) are proteins that upon ligand stimulation undergo dimerization and autophosphorylation. Eph receptors (EphRs) are RTKs that are found in different cell types, from both tissues that are developing and from mature tissues, and play important roles in the development of the central nervous system and peripheral nervous system. EphRs also play roles in synapse formation, neural crest formation, angiogenesis and in remodeling the vascular system. Interaction of EphRs with their ephrin ligands lead to activation of signal transduction pathways and formation of many transient protein-protein interactions that ultimately leads to cytoskeletal remodeling. However, the sequence of events at the molecular level is not well understood. We used blue native PAGE and MS to analyze the transient protein-protein interactions that resulted from the stimulation of EphB2 receptors by their ephrinB1-Fc ligands. We analyzed the phosphotyrosine-containing protein complexes immunoprecipitated from the cell lysates of both unstimulated (-) and ephrinB1-Fc-stimulated (+) NG108 cells. Our experiments allowed us to identify many signaling proteins, either known to be part of EphB2 signaling or new for this pathway, which are involved in transient protein-protein interactions upon ephrinB1-Fc stimulation. These data led us to investigate the roles of proteins such as FAK, WAVEs and Nischarin in EphB2 signaling
PMCID:3563432
PMID: 21932443
ISSN: 1615-9861
CID: 145796
Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus
Autio, Henri; Matlik, Kert; Rantamaki, Tomi; Lindemann, Lothar; Hoener, Marius C; Chao, Moses; Arumae, Urmas; Castren, Eero
Acetylcholinesterase inhibitors are first-line therapies for Alzheimer's disease. These drugs increase cholinergic tone in the target areas of the cholinergic neurons of the basal forebrain. Basal forebrain cholinergic neurons are dependent upon trophic support by nerve growth factor (NGF) through its neurotrophin receptor, TrkA. In the present study, we investigated whether the acetylcholinesterase inhibitors donepezil and galantamine could influence neurotrophin receptor signaling in the brain. Acute administration of donepezil (3 mg/kg, i.p.) led to the rapid autophosphorylation of TrkA and TrkB neurotrophin receptors in the adult mouse hippocampus. Similarly, galantamine dose-dependently (3, 9 mg/kg, i.p.) increased TrkA and TrkB phosphorylation in the mouse hippocampus. Both treatments also increased the phosphorylation of transcription factor CREB and tended to increase the phosphorylation of AKT kinase but did not alter the activity of MAPK42/44. Chronic treatment with galantamine (3 mg/kg, i.p., 14 days), did not induce changes in hippocampal NGF and BDNF synthesis or protein levels. Our findings show that acetylcholinesterase inhibitors are capable of rapidly activating hippocampal neurotrophin signaling and thus suggest that therapies targeting Trk signaling may already be in clinical use in the treatment of AD
PMCID:3928503
PMID: 21820453
ISSN: 1873-7064
CID: 139925
Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments
Baj, Gabriele; Leone, Emiliano; Chao, Moses V; Tongiorgi, Enrico
BDNF is produced from many transcripts that display distinct subcellular localization, suggesting that spatially restricted effects occur as a function of genetic and physiological regulation. Different BDNF 5' splice variants give a restricted localization in the cell body or the proximal and distal compartments of dendrites; however, the functional consequences are not known. Silencing individual endogenous transcripts or overexpressing BDNF-GFP transcripts in cultured neurons demonstrated that whereas some transcripts (1 and 4) selectively affected proximal dendrites, others (2C and 6) affected distal dendrites. Moreover, segregation of BDNF transcripts resulted in a highly selective activation of the BDNF TrkB receptor. These studies indicate that spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments
PMCID:3189043
PMID: 21933955
ISSN: 1091-6490
CID: 145795
Paranodal permeability in "myelin mutants"
Shroff, Seema; Mierzwa, Amanda; Scherer, Steven S; Peles, Elior; Arevalo, Juan C; Chao, Moses V; Rosenbluth, Jack
Fluorescent dextran tracers of varying sizes have been used to assess paranodal permeability in myelinated sciatic nerve fibers from control and three 'myelin mutant' mice, Caspr-null, cst-null, and shaking. We demonstrate that in all of these the paranode is permeable to small tracers (3 kDa and 10 kDa), which penetrate most fibers, and to larger tracers (40 kDa and 70 kDa), which penetrate far fewer fibers and move shorter distances over longer periods of time. Despite gross diminution in transverse bands (TBs) in the Caspr-null and cst-null mice, the permeability of their paranodal junctions is equivalent to that in controls. Thus, deficiency of TBs in these mutants does not increase the permeability of their paranodal junctions to the dextrans we used, moving from the perinodal space through the paranode to the internodal periaxonal space. In addition, we show that the shaking mice, which have thinner myelin and shorter paranodes, show increased permeability to the same tracers despite the presence of TBs. We conclude that the extent of penetration of these tracers does not depend on the presence or absence of TBs but does depend on the length of the paranode and, in turn, on the length of 'pathway 3,' the helical extracellular pathway that passes through the paranode parallel to the lateral edge of the myelin sheath. (c) 2011 Wiley-Liss, Inc
PMCID:3143265
PMID: 21618613
ISSN: 1098-1136
CID: 135571
Cultured vestibular ganglion neurons demonstrate latent HSV1 reactivation
Roehm, Pamela C; Camarena, Vladimir; Nayak, Shruti; Gardner, James B; Wilson, Angus; Mohr, Ian; Chao, Moses V
OBJECTIVES/HYPOTHESIS: Vestibular neuritis is a common cause of both acute and chronic vestibular dysfunction. Multiple pathologies have been hypothesized to be the causative agent of vestibular neuritis; however, whether herpes simplex type I (HSV1) reactivation occurs within the vestibular ganglion has not been demonstrated previously by experimental evidence. We developed an in vitro system to study HSV1 infection of vestibular ganglion neurons (VGNs) using a cell culture model system. STUDY DESIGN: basic science study. RESULTS: Lytic infection of cultured rat VGNs was observed following low viral multiplicity of infection (MOI). Inclusion of acyclovir suppressed lytic replication and allowed latency to be established. Upon removal of acyclovir, latent infection was confirmed with reverse-transcription polymerase chain reaction and by RNA fluorescent in situ hybridization for the latency-associated transcript (LAT). A total of 29% cells in latently infected cultures were LAT positive. The lytic ICP27 transcript was not detected by reverse-transcription polymerase chain reaction (RT-PCR). Reactivation of HSV1 occurred at a high frequency in latently infected cultures following treatment with trichostatin A (TSA), a histone deactylase inhibitor. CONCLUSIONS: VGNs can be both lytically and latently infected with HSV1. Furthermore, latently infected VGNs can be induced to reactivate using TSA. This demonstrates that reactivation of latent HSV1 infection in the vestibular ganglion can occur in a cell culture model, and suggests that reactivation of HSV1 infection a plausible etiologic mechanism of vestibular neuritis
PMCID:3696486
PMID: 21898423
ISSN: 1531-4995
CID: 137886
TrkB as a Potential Synaptic and Behavioral Tag
Lu, Yuan; Ji, Yuanyuan; Ganesan, Sundar; Schloesser, Robert; Martinowich, Keri; Sun, Mu; Mei, Fan; Chao, Moses V; Lu, Bai
Late-phase long-term potentiation (L-LTP), a cellular model for long-term memory (LTM), requires de novo protein synthesis. An attractive hypothesis for synapse specificity of long-term memory is 'synaptic tagging': synaptic activity generates a tag, which 'captures' the PRPs (plasticity-related proteins) derived outside of synapses. Here we provide evidence that TrkB, the receptor of BDNF (brain-derived neurotrophic factor), may serve as a 'synaptic tag.' TrkB is transiently activated by weak theta-burst stimulation (TBS) that induces only early-phase LTP (E-LTP). This TrkB activation is independent of protein synthesis, and confined to stimulated synapses. Induction of L-LTP by strong stimulation in one synaptic pathway converts weak TBS-induced E-LTP to L-LTP in a second, independent pathway. Transient inhibition of TrkB around the time of weak TBS to the second pathway diminished L-LTP in that pathway without affecting the first one. Behaviorally, weak training, which induces short-term memory (STM) but not LTM, can be consolidated into LTM by exposing animals to novel but not familiar environment 1 h before training. Inhibition of TrkB during STM training blocked such consolidation. These results suggest TrkB as a potential tag for synapse-specific expression of L-LTP and LTM
PMCID:3169103
PMID: 21849537
ISSN: 1529-2401
CID: 136649
APP is Phosphorylated by TrkA and Regulates NGF/TrkA Signaling
Matrone, Carmela; Barbagallo, Alessia P M; La Rosa, Luca R; Florenzano, Fulvio; Ciotti, Maria T; Mercanti, Delio; Chao, Moses V; Calissano, Pietro; D'Adamio, Luciano
The pathogenic model of Alzheimer's disease (AD) posits that aggregates of amyloid beta, a product of amyloid precursor protein (APP) processing, cause dementia. However, alterations of normal APP functions could contribute to AD pathogenesis, and it is therefore important to understand the role of APP. APP is a member of a gene family that shows functional redundancy as documented by the evidence that single knock-out mice are viable, whereas mice with combined deletions of APP family genes die shortly after birth. A residue in the APP intracellular region, Y(682), is indispensable for these essential functions of APP. It is therefore important to identify pathways that regulate phosphorylation of Y(682) as well as the role of Y(682) in vivo. TrkA is associated with both phosphorylation of APP-Y(682) and alteration of APP processing, suggesting that tyrosine phosphorylation of APP links APP processing and neurotrophic signaling to intracellular pathways associated with cellular differentiation and survival. Here we have tested whether the NGF/TrkA signaling pathway is a physiological regulator of APP phosphorylation. We find that NGF induces tyrosine phosphorylation of APP, and that APP interacts with TrkA and this interaction requires Y(682). Unpredictably, we also uncover that APP, and specifically Y(682), regulates activation of the NGF/TrkA signaling pathway in vivo, the subcellular distribution of TrkA and the sensitivity of neurons to the trophic action of NGF. This evidence suggests that these two membrane protein's functions are strictly interconnected and that the NGF/TrkA signaling pathway is involved in AD pathogenesis and can be used as a therapeutic target
PMCID:3319322
PMID: 21849536
ISSN: 1529-2401
CID: 136648
A selective role for ARMS/Kidins220 scaffold protein in spatial memory and trophic support of entorhinal and frontal cortical neurons
Duffy, Aine M; Schaner, Michael J; Wu, Synphen H; Staniszewski, Agnieszka; Kumar, Asok; Arevalo, Juan Carlos; Arancio, Ottavio; Chao, Moses V; Scharfman, Helen E
Progressive cortical pathology is common to several neurodegenerative and psychiatric disorders. The entorhinal cortex (EC) and frontal cortex (FC) are particularly vulnerable, and neurotrophins have been implicated because they appear to be protective. A downstream signal transducer of neurotrophins, the ankyrin repeat-rich membrane spanning scaffold protein/Kidins 220 (ARMS) is expressed in the cortex, where it could play an important role in trophic support. To test this hypothesis, we evaluated mice with a heterozygous deletion of ARMS (ARMS(+/-) mice). Remarkably, the EC and FC were the regions that demonstrated the greatest defects. Many EC and FC neurons became pyknotic in ARMS(+/-) mice, so that large areas of the EC and FC were affected by 12 months of age. Areas with pyknosis in the EC and FC of ARMS(+/-) mice were also characterized by a loss of immunoreactivity to a neuronal antigen, NeuN, which has been reported after insult or injury to cortical neurons. Electron microscopy showed that there were defects in mitochondria, myelination, and multilamellar bodies in the EC and FC of ARMS(+/-) mice. Although primarily restricted to the EC and FC, pathology appeared to be sufficient to cause functional impairments, because ARMS(+/-) mice performed worse than wild-type on the Morris water maze. Comparisons of males and females showed that female mice were the affected sex in all comparisons. Taken together, the results suggest that the expression of a prominent neurotrophin receptor substrate normally protects the EC and FC, and that ARMS may be particularly important in females
PMCID:3100364
PMID: 21419124
ISSN: 1090-2430
CID: 145797
Study of Neurotrophin-3 Signaling in Primary Cultured Neurons using Multiplex Stable Isotope Labeling with Amino Acids in Cell Culture
Zhang, Guoan; Deinhardt, Katrin; Chao, Moses V; Neubert, Thomas A
Conventional stable isotope labeling with amino acids in cell culture (SILAC) requires extensive metabolic labeling of proteins and therefore is difficult to apply to cells that do not divide or are unstable in SILAC culture. Using two different sets of heavy amino acids for labeling allows for straightforward SILAC quantitation using partially labeled cells because the two cell populations are always equally labeled. Here we report the application of this labeling strategy to primary cultured neurons. We demonstrated that protein quantitation was not compromised by incomplete labeling of the neuronal proteins. We used this method to study neurotrophin-3 (NT-3) signaling in primary cultured neurons. Surprisingly our results indicate TrkB signaling is a major component of the signaling network induced by NT-3 in cortical neurons. In addition, involvement of proteins such as VAMP2, Scamp1, and Scamp3 suggests that NT-3 may lead to enhanced exocytosis of synaptic vesicles
PMCID:3090507
PMID: 21370927
ISSN: 1535-3907
CID: 132309
Distribution of Phosphorylated TrkB Receptor in the Mouse Hippocampal Formation Depends on Sex and Estrous Cycle Stage
Spencer-Segal, Joanna L; Waters, Elizabeth M; Bath, Kevin G; Chao, Moses V; McEwen, Bruce S; Milner, Teresa A
Tropomyosin-related kinase B receptor (TrkB) is a neurotrophin receptor important for the synaptic plasticity underlying hippocampal-dependent learning and memory. Because this receptor is widely expressed in hippocampal neurons, the precise location of TrkB activation is likely important for its specific actions. The goal of this study was to identify the precise sites of TrkB activation in the mouse hippocampal formation and to determine any changes in the distribution of activated TrkB under conditions of enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal excitability. Using electron microscopy, we localized TrkB phosphorylated at tyrosine 816 (pTrkB) in the hippocampal formation of male and female mice under conditions of naturally low circulating estradiol and naturally high circulating estradiol, when BDNF expression, TrkB signaling, and synaptic plasticity are enhanced. To compare relative amounts of pTrkB in each group, we counted profiles containing pTrkB-immunoreactivity (pTrkB-ir) in all hippocampal subregions. pTrkB-ir was in axons, axon terminals, dendrites, and dendritic spines of neurons in the hippocampal formation, but the majority of pTrkB-ir localized to presynaptic profiles. pTrkB-ir also was abundant in glial profiles, which were further identified as microglia using immunofluorescence and confocal microscopy. Axonal and glial pTrkB-ir and pTrkB-ir in the CA1 stratum radiatum were more abundant in high-estradiol states (proestrus females) than low-estradiol states (estrus and diestrus females and males). These findings suggest that presynaptic TrkB is positioned to modulate estradiol-mediated and BDNF-dependent synaptic plasticity. Furthermore, they suggest a novel role for TrkB in microglial function in the neuroimmune system
PMCID:3108038
PMID: 21543608
ISSN: 1529-2401
CID: 131976