Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:daiw01

Total Results:

135


Covalent modifications of histones during mitosis and meiosis

Xu, Dazhong; Bai, Jingxiang; Duan, Qing; Costa, Max; Dai, Wei
Higher order chromosome structures are the hallmark of mitotic and meiotic cells. Chromatin condensation and compaction are essential for rapid chromosome congression and accurate chromosome segregation during cell division. The core histones possess tails at their amino-termini. These tails, which extend from the surface of the nucleosomes, are highly dynamic and subject to an extensive array of covalent modifications. Modified histone tails play an important role, not only in the folding of nucleosomal arrays into higher order chromatin structures but also in gene regulation. The combination of these distinct covalent modifications of histones constitutes 'the histone code' that regulates various cellular processes, including mitotic and meiotic progression
PMID: 19855177
ISSN: 1551-4005
CID: 105250

A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity

Zhou, Xue; Arita, Adriana; Ellen, Thomas P; Liu, Xin; Bai, Jingxiang; Rooney, John P; Kurtz, Adrienne D; Klein, Catherine B; Dai, Wei; Begley, Thomas J; Costa, Max
We have used Saccharomyces cerevisiae to identify toxicologically important proteins and pathways involved in arsenic-induced toxicity and carcinogenicity in humans. We performed a systemic screen of the complete set of 4733 haploid S. cerevisiae single-gene-deletion mutants to identify those that have decreased or increased growth, relative to wild type, after exposure to sodium arsenite (NaAsO(2)). IC(50) values for all mutants were determined to further validate our results. Ultimately we identified 248 mutants sensitive to arsenite and 5 mutants resistant to arsenite exposure. We analyzed the proteins corresponding to arsenite-sensitive mutants and determined that they belonged to functional categories that include protein binding, phosphate metabolism, vacuolar/lysosomal transport, protein targeting, sorting, and translocation, cell growth/morphogenesis, cell polarity and filament formation. Furthermore, these data were mapped onto a protein interactome to identify arsenite-toxicity-modulating networks. These networks are associated with the cytoskeleton, ubiquitination, histone acetylation and the MAPK signaling pathway. Our studies have potential implications for understanding toxicity and carcinogenesis in arsenic-induced human conditions, such as cancer and aging
PMCID:2763962
PMID: 19631266
ISSN: 1089-8646
CID: 104719

Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice

Rao, Chinthalapally V; Yamada, Hiroshi Y; Yao, Yixin; Dai, Wei
Aneuploidy is defined as numerical abnormalities of chromosomes and is frequently (>90%) present in solid tumors. In general, tumor cells become increasingly aneuploid with tumor progression. It has been proposed that enhanced genomic instability at least contributes significantly to, if not requires, tumor progression. Two major modes for genomic instability are microsatellite instability (MIN) and chromosome instability (CIN). MIN is associated with DNA-level defects (e.g. mismatch repair defects), and CIN is associated with mitotic errors such as chromosome mis-segregation. The mitotic spindle assembly checkpoint (SAC) ensures that cells with defective mitotic spindles or defective interaction between the spindles and kinetochores do not initiate chromosomal segregation during mitosis. Thus, the SAC functions to protect the cell from chromosome mis-segregation and anueploidy during cell division. A loss of the SAC function results in gross aneuploidy, a condition from which cells with an advantage for proliferation will be selected. During the past several years, a flurry of genetic studies in mice and humans strongly support the notion that an impaired SAC causes enhanced genomic instabilities and tumor development. This review article summarizes the roles of key spindle checkpoint proteins {i.e. Mad1/Mad1L1, Mad2/Mad2L1, BubR1/Bub1B, Bub3/Bub3 [conventional protein name (yeast or human)/mouse protein name]} and the modulators (i.e. Chfr/Chfr, Rae1/Rae1, Nup98/Nup98, Cenp-E/CenpE, Apc/Apc) in genomic stability and suppression of tumor development, with a focus on information from genetically engineered mouse model systems. Further elucidation of molecular mechanisms of the SAC signaling has the potential for identifying new targets for rational anticancer drug design.
PMCID:2736299
PMID: 19372138
ISSN: 0143-3334
CID: 382132

Defects in chromosome congression and mitotic progression in KIF18A-deficient cells are partly mediated through impaired functions of CENP-E

Huang, Ying; Yao, Yixin; Xu, Han-Zhang; Wang, Zhu-Gang; Lu, Luo; Dai, Wei
KIF18A, a molecular motor, is an essential component in the regulation of orderly chromosome congression by attenuation of the kinetochore oscillation amplitude at the midzone during mitosis in vertebrate cells. Here we report that KIF18A depletion resulted in mitotic arrest which was accompanied by the presence of unaligned chromosomes in HeLa cells. This resembles the phenotype induced by an impaired function of CENP-E, also a mitotic kinesin essential for the formation of the mitotic spindles. Our further analysis showed that KIF18A depletion caused specific downregulation of CENP-E. Downregulation of CENP-E as the result of KIF18A silencing was not due to reduced transcription but primarily due to the enhanced protein degradation. Co-immunoprecipitation revealed that KIF18A physically interacted with CENP-E and BubR1 during mitosis. Ectopic expression of the wild-type tail domain of CENP-E, but not a corresponding mutant, significantly suppressed chromosome congression defects in mitotic cells. Together, our studies strongly suggest that chromosome congression defects as the result of KIF18A depletion is at least in part mediated through destabilizing kinetochore CENP-E
PMCID:3020402
PMID: 19625775
ISSN: 1551-4005
CID: 101639

Arsenic trioxide suppresses paclitaxel-induced mitotic arrest

Duan, Q; Komissarova, E; Dai, W
OBJECTIVES/OBJECTIVE:To understand if there exists a functional interaction between arsenic trioxide and paclitaxel in vitro. MATERIALS AND METHODS/METHODS:HeLa and HCT116 (rho53(+/+) and rho53(-/-)) cells were treated with As2O3 and/or paclitaxel for various times. Treated cells were collected for analyses using a combination of flow cytometry, fluorescence microscopy and Western blotting. RESULTS:Because As(2)O(3) is capable of inhibiting tubulin polymerization and inducing mitotic arrest, we examined whether there existed any functional interaction between As(2)O(3) and paclitaxel, a well-known microtubule poison. Flow cytometry and fluorescence microscopy revealed that although As(2)O(3) alone caused a moderate level of mitotic arrest, it greatly attenuated paclitaxel-induced mitotic arrest in cells with p53 deficiency. Western blot analysis showed that As(2)O(3) significantly blocked phosphorylation of BubR1, Cdc20, and Cdc27 in cells treated with paclitaxel, suggesting that arsenic compromised the activation of the spindle checkpoint. Our further studies revealed that the attenuation of paclitaxel-induced mitotic arrest by As(2)O(3) resulted primarily from sluggish cell cycle progression at S phase but not enhanced mitotic exit. CONCLUSION/CONCLUSIONS:The observations that As(2)O(3) has a negative impact on the cell cycle checkpoint activation by taxol should have significant clinical implications because the efficacy of taxol in the clinics is associated with its ability to induce mitotic arrest and subsequent mitotic catastrophe.
PMCID:4034259
PMID: 19397590
ISSN: 1365-2184
CID: 4049412

Changes in Growth Performance, Metabolic Enzyme Activities, and Content of Fe, Cu, and Zn in Liver and Kidney of Tilapia (Oreochromis niloticus) Exposed to Dietary Pb

Dai, Wei; Fu, Linglin; Du, Huahua; Jin, Chengguan; Xu, Zirong
Tilapia (Oreochromis niloticus) were exposed to 0, 100, 400, and 800 mug/g concentrations of Pb in diet for 60 days, and changes in growth performance, metabolic enzyme activities, and essential trace elements (Fe, Cu, and Zn) content in liver and kidney were investigated. Daily weight gain, feed conversation ratio, and survival of tilapia were not significantly affected by dietary Pb. Alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) activities in liver and kidney were affected by dietary Pb in a dissimilar way: Pb concentration-related decreases in ALT, AST, and LDH activities were observed in kidney, while these enzyme activities in liver were stimulated in a Pb concentration-dependent manner. It was demonstrated that the inhibitory effects of dietary Pb on alkaline phosphatase, Na, K-adenosine triphosphatase (ATPase), Ca, and Mg-ATPase activities in both liver and kidney were Pb concentration-dependent. It was also indicated that the content of Fe, Cu, and Zn in liver and kidney decreased with the increasing dietary Pb concentrations. The results suggested that long-term dietary Pb exposure could affect metabolic enzyme activities and the content of Fe, Cu, and Zn in liver and kidney, whereas growth impairment was not observed in tilapia
PMID: 18953496
ISSN: 1559-0720
CID: 96276

Effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in the digestive system of tilapia (Oreochromis niloticus)

Dai, Wei; Du, Huahua; Fu, Linglin; Jin, Chengguan; Xu, Zirong; Liu, Huitao
With the increasing occurrence of dietary lead (Pb) contamination in aquatic environment, threat of the dietary Pb toxicity to aquatic organisms attracted more attention. In this study, after being exposed to dietary Pb at concentrations of 0, 100, 400, and 800-microg/g dry weight for 60 days, the groups of tilapia (Oreochromis niloticus) were sacrificed and sampled to analyze the effects of dietary Pb on accumulation, histopathology, and digestive enzyme activities in tissues of the digestive system. The results showed that the Pb accumulation in tissues increased with the dietary Pb concentrations. Moreover, Pb accumulated in sampled tissues in the following order: intestine > stomach > liver. By observation of liver histological sections in optical microscope, lesions could be detected in the Pb-contaminated groups. It was also demonstrated that the inhibitory effect of dietary Pb on digestive enzyme activities was dietary Pb concentration dependent. Different degrees of inhibition of enzyme activities were exhibited in sampled tissues. It was indicated that digestive enzyme activities in the digestive system might be considered as the potential biomarkers of dietary Pb contamination in tilapia
PMID: 18825319
ISSN: 1559-0720
CID: 96277

Quantitative detection of the expression of mitochondrial cytochrome c oxidase subunits mRNA in the cerebral cortex after experimental traumatic brain injury

Dai, Wei; Cheng, Hui-lin; Huang, Ren-qiang; Zhuang, Zong; Shi, Ji-Xin
Secondary brain damage plays a critical role in the outcome of patients with traumatic brain injury (TBI). The multiple mechanisms underlying secondary brain damage, including posttraumatic cerebral ischemia, glutamate excitotoxicity, oxidative stress, calcium overload and inflammation, are associated with increased mortality and morbidity after head injury. TBI is documented to have detrimental effects on mitochondria, such as alterations in glucose utilization and the depression of mitochondrial oxidative phosphorylation. Studies on mitochondrial metabolism have provided evidence for dysfunction of the cytochrome oxidase complex of the electron transport chain (complex IV) after TBI. A growing body of evidence indicates that cytochrome c oxidase is vital for mitochondrial oxidative phosphorylation. Therefore, this study aimed to detect the expression of cytochrome c oxidase (CO) mRNA in a rat weight-dropping trauma model and to clarify the differences between injured cortex (IC) and contralateral cortex (CC) after TBI. A total of forty-four rats were randomly assigned to 7 groups: control groups (n=4), sham-operated group (n=20), 6 h, 1 d, 3 d, 5 d and 7 d postinjury groups (n=4 for each group). The group consisted of sham-operated animals underwent parietal craniotomy without TBI. The rats in postinjury groups were subjected to TBI. The rats of control group were executed immediately without TBI or craniotomy after anesthesia. The brain-injured and sham-operated animals were killed on 6 h, 1 d, 3 d, 5 d and 7 d, respectively. Tissue sections from IC and CC were obtained and the expression of cytochrome c oxidase I, II, and III (CO I, II, III) mRNA, three mitochondrial encoded subunits of complex IV, were assessed by Real-time quantitative PCR. A reduction of CO I, II, and III mRNA expression was detected from IC and reduced to the lowest on 3 d. By contrast, the mRNA expression from CC suggested a slight elevation. The differences may indicate the degree of metabolic and physiologic dysfunction. Our results will better define the roles of gene expression and metabolic function in long-term prognosis and outcome after TBI. With a considerable understanding of post-injury mitochondrial dysfunction, therapeutic interventions targeted to the mitochondria may prevent secondary brain damage that leads to long-term cell death and neurobehavioral disability
PMID: 19063873
ISSN: 1872-6240
CID: 96274

Compressive sensing DNA microarrays

Dai, Wei; Sheikh, Mona A; Milenkovic, Olgica; Baraniuk, Richard G
Compressive sensing microarrays (CSMs) are DNA-based sensors that operate using group testing and compressive sensing (CS) principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed
PMCID:3171419
PMID: 19158952
ISSN: 1687-4145
CID: 96272

Preparation and identification of scFv and bsFv against transferrin receptor

Liu, Jing; Xiao, Daiwen; Zhou, Xiaoou; Wen, Xue; Dai, Hong; Wang, Zhihua; Shen, Xin; Dai, Wei; Yang, Daofeng; Shen, Guanxin
To obtain single chain variable fragment (scFv) and bivalent single chain variable fragment (bsFv) against transferrin receptor, up-stream and down-stream primers were designed according to the complementary sequences of FR1 region of variable heavy (VH) and FR4 of variable light (VL), respectively, which contained inter-linker G4S and the restriction endonuclease SfiI, AscI and NotI. Two pieces of scFv fragments were first amplified through PCR and then inserted into plasmid pAB1, which could express scFv protein once induced by IPTG in the host bacteria. To express scFv and bsFv, E. coli TG1 was cultured in LB broth and was induced by IPTG. The restriction enzyme digestion map and DNA sequencing demonstrated that scFv and bsFv genes were successfully inserted into the expression plasmid. SDS-PAGE and Western blotting revealed the protein band at 35kD and 60kD, which were consistent with the molecular weight of scFv and bsFv respectively. Flow cytometry showed that scFv and bsFv harbored the specific binding activity with TfR expressed in various tumor cells, and the avidity of bsFv was higher than that of the parent scFv
PMID: 19107352
ISSN: 1672-0733
CID: 96273