Searched for: in-biosketch:yes
person:dingy04
Maternal and fetal 11C-cocaine uptake and kinetics measured in vivo by combined PET and MRI in pregnant nonhuman primates
Benveniste, Helene; Fowler, Joanna S; Rooney, William; Ding, Yu-Shin; Baumann, Angela L; Moller, Daryn H; Du, Congwu; Backus, Walter; Logan, Jean; Carter, Pauline; Coplan, Jeremy D; Biegon, Anat; Rosenblum, Leonard; Scharf, Bruce; Gatley, John S; Volkow, Nora D
Cocaine use during pregnancy has been shown to be deleterious to the infant. This may reflect reduction of flow to placenta or effects on the fetal brain. Methods to assess pharmacokinetics of drugs of abuse in vivo would be useful to investigate the mechanisms underlying the fetal adverse effects. We recently reported that combined MRI and PET technology allows the measurement of radioisotope distribution in maternal and fetal organs in pregnant Macaca radiata. Here, we evaluate the utility of PET to measure the uptake and distribution of (11)C-cocaine in the third-trimester fetus. METHODS: Six pregnant M. radiata weighing 3.8-9.0 kg were anesthetized and MR images were acquired on a 4-T MRI instrument. In all 6 animals, dynamic PET scans were subsequently acquired using 148-259 MBq of (11)C-cocaine. Time-activity curves for both maternal and fetal organs were obtained simultaneously with the pregnant animal positioned transverse in the PET scanner. Distribution volume ratios for maternal and fetal brain for (11)C-cocaine were calculated. RESULTS: Coregistration of PET and MR images allowed identification of fetal organs and brain regions and demonstrated that (11)C-cocaine or its labeled metabolites readily cross the placenta and accumulate mainly in fetal liver and to a lesser extent in the brain. Time to reach peak (11)C uptake in brain was shorter for the mother than for the fetus. The distribution volume ratios of the maternal striatum were higher than those of the fetus. Placenta was clearly visible on the early time frames and showed more rapid uptake and clearance than other fetal tissues. CONCLUSION: The pregnant M. radiata model allows the noninvasive measurement of radioisotope pharmacokinetics in maternal and fetal brain and other organs simultaneously. Although the uptake of radioactivity into the fetal brain after the injection of (11)C-cocaine is lower and slower than in the maternal brain, a measurable quantity of (11)C-cocaine (or its labeled metabolites) accumulates in the fetal brain at early times after injection. The highest accumulation of (11)C occurs in the fetal liver. Rapid radioisotope accumulation and clearance in the placenta offer potential as an input function for kinetic modeling for future studies of binding site availability
PMID: 15695792
ISSN: 0161-5505
CID: 144582
Synthesis and evaluation of inhaled [11C]butane and intravenously injected [11C]acetone as potential radiotracers for studying inhalant abuse
Gerasimov, Madina R; Ferrieri, Richard A; Pareto, Deborah; Logan, Jean; Alexoff, David; Ding, Yu-Shin
The phenomenon of inhalant abuse is a growing problem in the US and many countries around the world. Yet, relatively little is known about the pharmacokinetic properties of inhalants that underlie their abuse potential. While the synthesis of 11C-labeled toluene, acetone and butane has been proposed in the literature, none of these compounds has been developed as radiotracers for PET studies. In the present report we extend our previous studies with [11C]toluene to include [11C]acetone and [11C]butane with the goal of comparing the pharmacokinetic profiles of these three volatile abused substances. Both [11C]toluene and [11C]acetone were administered intravenously and [11C]butane was administered via inhalation to anesthesized baboons. Rapid and efficient uptake of radiolabeled toluene and acetone into the brain was followed by fast clearance in the case of toluene and slower kinetics in the case of acetone. [11C]Butane was detected in the blood and brain following inhalation, but the levels of radioactivity in both tissues dropped to half of the maximal values over the period of less than a minute. To our knowledge, this is the first reported study of the in vivo brain pharmacokinetics of labeled acetone and butane in nonhuman primates. These data provide insight into the pharmacokinetic features possibly associated with the abuse liability of toluene, acetone and butane
PMID: 15721766
ISSN: 0969-8051
CID: 149031
PET imaging in clinical drug abuse research
Gatley, S John; Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Logan, Jean; Ding, Yu-Shin; Gerasimov, Madina
Over the last two decades, SPECT (single photon emission computed tomography) and especially PET (positron emission tomography) have proven increasingly effective imaging modalities in the study of human psychopharmacology. Abusing populations can be studied at multiple times after abstinence begins, to give information about neurochemical and physiological adaptations of the brain during recovery from addiction. Individual human subjects can be studied using multiple positron labeled radiotracers, so as to probe more than one facet of brain function. PET and SPECT have been used to help our understanding of many aspects of the pharmacokinetics and pharmacodynamics of abused drugs, and have made valuable contributions in terms of drug mechanisms, drug interactions (e.g. cocaine and alcohol) and drug toxicities. They have also been employed to study the acute effects of drugs on populations of active drug abusers and of normal controls, and to evaluate the neurochemical consequences of candidate therapies for drug abuse. A particularly productive strategy has been the use of PET in conjunction with neuropsychological testing of subjects, to allow correlation of imaging data with uniquely human aspects of the effects of drugs, such as euphoria and craving
PMID: 16250850
ISSN: 1381-6128
CID: 144584
6-[18F]Fluoro-A-85380, a new PET tracer for the nicotinic acetylcholine receptor: studies in the human brain and in vivo demonstration of specific binding in white matter
Ding, Yu-Shin; Fowler, Joanna S; Logan, Jean; Wang, Gene-Jack; Telang, Frank; Garza, Victor; Biegon, Anat; Pareto, Deborah; Rooney, William; Shea, Colleen; Alexoff, David; Volkow, Nora D; Vocci, Frank
PMID: 15236351
ISSN: 0887-4476
CID: 144590
Brain kinetics of methylphenidate (Ritalin) enantiomers after oral administration
Ding, Yu-Shin; Gatley, S John; Thanos, Panayotis K; Shea, Colleen; Garza, Victor; Xu, Youwen; Carter, Pauline; King, Payton; Warner, Don; Taintor, Nicholas B; Park, Daniel J; Pyatt, Bea; Fowler, Joanna S; Volkow, Nora D
Methylphenidate (MP) (Ritalin) is widely used for the treatment of attention deficit hyperactivity disorder (ADHD). It is a chiral drug, marketed as the racemic mixture of d- and l-threo enantiomers. Our previous studies (PET and microdialysis) in humans, baboons, and rats confirm the notion that pharmacological specificity of MP resides predominantly in the d-isomer. A recent report that intraperitoneally (i.p.) administered l-threo-MP displayed potent, dose-dependent inhibition of cocaine- or apomorphine-induced locomotion in rats, raises the question of whether l-threo-MP has a similar effect when given orally. It has been speculated that l-threo-MP is poorly absorbed in humans when it is given orally because of rapid presystemic metabolism. To investigate whether l-threo-MP or its metabolites can be delivered to the brain when it is given orally, and whether l-threo-MP is pharmacologically active. PET and MicroPET studies were carried out in baboons and rats using orally delivered C-11-labeled d- and l-threo-MP ([methyl-(11)C]d-threo-MP and [methyl-(11)C]l-threo-MP). In addition, we assessed the effects of i.p. l-threo-MP on spontaneous and cocaine-stimulated locomotor activity in mice. There was a higher global uptake of carbon-11 in both baboon and rat brain for oral [(11)C]l-threo-MP than for oral [(11)C]d-threo-MP. Analysis of the chemical form of radioactivity in rat brain after [(11)C]d-threo-MP indicated mainly unchanged tracer, whereas with [(11)C]l-threo-MP, it was mainly a labeled metabolite. The possibility that this labeled metabolite might be [(11)C]methanol or [(11)C]CO(2), derived from demethylation, was excluded by ex vivo studies in rats. When l-threo-MP was given i.p. to mice at a dose of 3 mg/kg, it neither stimulated locomotor activity nor inhibited the increased locomotor activity due to cocaine administration. These results suggest that, in animal models, l-threo-MP or its metabolite(s) is (are) absorbed from the gastrointestinal tract and enters the brain after oral administration, but that l-threo-MP may not be pharmacologically active. These results are pertinent to the question of whether l-threo-MP contributes to the behavioral and side effect profile of MP during treatment of ADHD
PMID: 15236349
ISSN: 0887-4476
CID: 144591
Synthesis, enantiomeric resolution, and selective C-11 methylation of a highly selective radioligand for imaging the norepinephrine transporter with positron emission tomography
Lin, Kuo-Shyan; Ding, Yu-Shin
Reboxetine, 2-[alpha-(2-ethoxyphenoxy)benzyl]morpholine, is a highly selective norepinephrine transporter (NET) blocker that has been used for the treatment of depression. Its methyl analogue, 2-[alpha-(2-methoxyphenoxy)benzyl]morpholine (MRB), has been radiolabeled with C-11 for studies of the NET system with positron emission tomography (PET). The normethyl precursor, 2-[alpha-(2-hydroxyphenoxy)benzyl]morpholine (desethylreboxetine), was synthesized in 6% overall yield via a multi-step regio- and stereo-specific synthesis, starting from a mono-O-protected catechol. The resulting racemic mixture of desethylreboxetine was resolved by chiral HPLC to provide the (2S,3S) and (2R,3R) enantiomers in >98% enantiomeric excess. These enantiomers were then used as precursors for radiosynthesis to prepare enantiomerically pure individual 11C-labeled MRB enantiomers for comparative PET studies in baboons. Selective C-11 methylation at the phenolic oxygen with [11C]CH3I was achieved in the presence of excess base. After HPLC purification, racemic ((2S,3S)/(2R,3R)) or enantiomerically pure ((2S,3S) or (2R,3R)) [11C]MRB was obtained in 61-74% decay-corrected radiochemical yields from [11C]CH3I in a synthesis time of 40 min with a radiochemical purity of >96% and a specific activity of 1.7-2.3 Ci/micromol (63-85 GBq/micromol) corrected from the end of bombardment (EOB)
PMID: 15236345
ISSN: 0899-0042
CID: 149032
Methylation of the asparagine synthetase promoter in human leukemic cell lines is associated with a specific methyl binding protein
Ren, Y; Roy, S; Ding, Y; Iqbal, J; Broome, J D
We have examined the methylation profiles of the asparagine synthetase (ASY) promoter in a number of human leukemic cell lines in relation to their asparagine (ASN) requirements in vitro. Cells in which the promoter is highly methylated are auxotrophs and express ASY at very low levels. Electromobility shift assays (EMSA) of nuclear extracts with oligomers from the promoting region show, in addition to recognized transcription factor binding, a novel methyl binding protein specific for a 12 base consensus sequence, which includes a single methylated CpG. This sequence overlaps that of the amino-acid response unit of the ASY promoter, which is activated byATF4 and C/EBP. Competition by the methyl binding protein could account for the observed failure of the methylated promoter to bind these transcription factors and consequently, although other mechanisms can also be operative, for the specific repression of the gene. The ASY methyl binding protein (ASMB) is present in leukemic lymphoid and myeloid cells irrespective of their methylation status, and in normal lymphocytes after phytohemagglutinin stimulation. It has been purified by affinity chromatography and has a molecular size of 40 kDa in 10% SDS-polyacrylamide gels.
PMID: 15048083
ISSN: 0950-9232
CID: 793032
Comparison of the binding of the irreversible monoamine oxidase tracers, [(11)C]clorgyline and [(11)C]l-deprenyl in brain and peripheral organs in humans
Fowler, Joanna S; Logan, Jean; Wang, Gene-Jack; Volkow, Nora D; Telang, Frank; Ding, Yu-Shin; Shea, Colleen; Garza, Victor; Xu, Youwen; Li, Zizhong; Alexoff, David; Vaska, Paul; Ferrieri, Richard; Schlyer, David; Zhu, Wei; John Gatley, S
The monoamine oxidase A and B (MAO A and B) radiotracers [(11)C]clorgyline (CLG) and [(11)C]L-deprenyl (DEP) and their deuterium labeled counterparts (CLG-D and DEP-D) were compared to determine whether their distribution and kinetics in humans are consistent with their physical, chemical and pharmacological properties and the reported ratios of MAO A:MAO B in post-mortem human tissues. Irreversible binding was consistently higher for DEP in brain, heart, kidneys and spleen but not lung where CLG >DEP and not in thyroid where there is no DEP binding. The generally higher DEP binding is consistent with its higher enzyme affinity and larger free fraction in plasma while differences in regional distribution for CLG and DEP in brain, heart, thyroid and lungs are consistent with different relative ratios of MAO A and B in humans
PMID: 15028243
ISSN: 0969-8051
CID: 144645
2-deoxy-2-[18F]fluoro-D-glucose and alternative radiotracers for positron emission tomography imaging using the human brain as a model
Fowler, Joanna S; Volkow, Nora D; Wang, Gene-Jack; Ding, Yu-Shin
2-deoxy-2-[18F]fluoro-D-glucose (18FDG) is now routinely available in many hospitals and other institutions either via on-site production or from one of the dozens of regional radiopharmacies worldwide. Its reliable production has opened the possibility for use in both basic and clinical investigations and also in pairing it with other more biologically specific positron emission tomography tracers to provide an important functional perspective to the measurement. In this article, we highlight examples in which 18FDG is paired with another carbon-11- or fluorine-18-labeled radiotracer in the same subject to correlate neurotransmitter-specific effects with regional metabolic effects using the human brain as a model. We describe studies that fall into three major areas: normal aging, neuropsychiatric disorders, and drug action
PMID: 15031811
ISSN: 0001-2998
CID: 144646
Evaluation of a new norepinephrine transporter PET ligand in baboons, both in brain and peripheral organs
Ding, Yu-Shin; Lin, Kuo-Shyan; Garza, Victor; Carter, Pauline; Alexoff, David; Logan, Jean; Shea, Colleen; Xu, Youwen; King, Payton
Reboxetine is a specific norepinephrine transporter (NET) inhibitor and has been marketed in several countries as a racemic mixture of the (R,R) and (S,S) enantiomers for the treatment of depression. Its methyl analog (methylreboxetine, MRB) has been shown to be more potent than reboxetine itself. We developed a nine-step synthetic procedure to prepare the normethyl precursor, which was used to synthesize [11C]O-methylreboxetine ([11C]MRB). We also developed a convenient resolution method using a chiral HPLC column to resolve the racemic precursor to obtain enantiomerically pure individual precursors that lead to the individual enantiomers (R,R)-[11C]MRB and (S,S)-[11C]MRB. Here we report an evaluation of the racemate and individual enantiomers of [11C]MRB as radioligands for PET imaging studies of NET systems in baboons both in brain and in peripheral organs. The relative regional distribution of the radioactivity after injection of [11C]MRB in baboon brain is consistent with the known distribution of NET. For a NET-poor region such as striatum, there were no significant changes in the striatal uptakes with and without the nisoxetine pretreatment. In contrast, a significant blocking effect was observed in NET-rich regions such as thalamus and cerebellum after injection of racemic [11C]MRB, with an even more dramatic effect after injection of (S,S)-[11C]MRB. These results, along with the fact that there was no regional specificity and no blocking effect by nisoxetine for (R,R)-[11C]MRB, suggest the enantioselectivity of MRB in vivo, consistent with previous in vitro and in vivo studies in rodents. PET studies of baboon torso revealed a blocking effect by desipramine only in the heart, a NET-rich organ, after injection of (S,S)-[11C]MRB, but not the (R,R)-isomer. These studies demonstrate that the use of (S,S)-[11C]MRB would allow a better understanding of the role that NET plays in living systems
PMID: 14556239
ISSN: 0887-4476
CID: 149033