Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:dt74

Total Results:

334


Optical Control of Insulin Secretion Using an Incretin Switch

Broichhagen, Johannes; Podewin, Tom; Meyer-Berg, Helena; von Ohlen, Yorrick; Johnston, Natalie R; Jones, Ben J; Bloom, Stephen R; Rutter, Guy A; Hoffmann-Roder, Anja; Hodson, David J; Trauner, Dirk
Incretin mimetics are set to become a mainstay of type 2 diabetes treatment. By acting on the pancreas and brain, they potentiate insulin secretion and induce weight loss to preserve normoglycemia. Despite this, incretin therapy has been associated with off-target effects, including nausea and gastrointestinal disturbance. A novel photoswitchable incretin mimetic based upon the specific glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide was designed, synthesized, and tested. This peptidic compound, termed LirAzo, possesses an azobenzene photoresponsive element, affording isomer-biased GLP-1R signaling as a result of differential activation of second messenger pathways in response to light. While the trans isomer primarily engages calcium influx, the cis isomer favors cAMP generation. LirAzo thus allows optical control of insulin secretion and cell survival.
PMCID:4736448
PMID: 26585495
ISSN: 1521-3773
CID: 2484272

Inter-kingdom Signaling by the Legionella Quorum Sensing Molecule LAI-1 Modulates Cell Migration through an IQGAP1-Cdc42-ARHGEF9-Dependent Pathway

Simon, Sylvia; Schell, Ursula; Heuer, Natalie; Hager, Dominik; Albers, Michael F; Matthias, Jan; Fahrnbauer, Felix; Trauner, Dirk; Eichinger, Ludwig; Hedberg, Christian; Hilbi, Hubert
Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions. In this study, we analyze the role of LAI-1 in inter-kingdom signaling. L. pneumophila lacking the autoinducer synthase LqsA no longer impeded the migration of infected cells, and the defect was complemented by plasmid-borne lqsA. Synthetic LAI-1 dose-dependently inhibited cell migration, without affecting bacterial uptake or cytotoxicity. The forward migration index but not the velocity of LAI-1-treated cells was reduced, and the cell cytoskeleton appeared destabilized. LAI-1-dependent inhibition of cell migration involved the scaffold protein IQGAP1, the small GTPase Cdc42 as well as the Cdc42-specific guanine nucleotide exchange factor ARHGEF9, but not other modulators of Cdc42, or RhoA, Rac1 or Ran GTPase. Upon treatment with LAI-1, Cdc42 was inactivated and IQGAP1 redistributed to the cell cortex regardless of whether Cdc42 was present or not. Furthermore, LAI-1 reversed the inhibition of cell migration by L. pneumophila, suggesting that the compound and the bacteria antagonistically target host signaling pathway(s). Collectively, the results indicate that the L. pneumophila quorum sensing compound LAI-1 modulates migration of eukaryotic cells through a signaling pathway involving IQGAP1, Cdc42 and ARHGEF9.
PMCID:4669118
PMID: 26633832
ISSN: 1553-7374
CID: 2484312

A Highly Convergent and Biomimetic Total Synthesis of Portentol

Cheng, Bichu; Trauner, Dirk
An efficient total synthesis of the unusual polyketide portentol is reported. Three boron aldol reactions were used to assemble the linear carbon chain of the natural product, which contains two challenging anti-anti stereotriads. A biomimetic double cyclization cascade, triggered by an oxidation, then afforded portentol and its known dehydration product, anhydroportentol. The biosynthesis of portentol and the biosynthetic relevance of our key step are discussed.
PMID: 26471956
ISSN: 1520-5126
CID: 2484332

An eight-step synthesis of epicolactone reveals its biosynthetic origin

Ellerbrock, Pascal; Armanino, Nicolas; Ilg, Marina K; Webster, Robert; Trauner, Dirk
Epicolactone is a recently isolated fungal metabolite that is highly complex for its size, and yet racemic. With its array of quaternary stereocentres, high degree of functionalization and intricate polycyclic structure, it poses a considerable challenge to synthesis, a challenge that can be met by understanding its biosynthetic origin. If drawn in a certain way, epicolactone reveals a pattern that resembles purpurogallin, the archetype of ubiquitous natural colourants formed via oxidative dimerization. Based on this insight, we designed a biomimetic synthesis of epicolactone that proceeds in only eight steps from vanillyl alcohol. We have isolated a key intermediate that supports our biosynthetic hypothesis and anticipate that an isomer of epicolactone stemming from our synthetic efforts could also be found as a natural product.
PMID: 26492007
ISSN: 1755-4349
CID: 2484302

Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-Tethered Photochromic Ligand

Broichhagen, Johannes; Damijonaitis, Arunas; Levitz, Joshua; Sokol, Kevin R; Leippe, Philipp; Konrad, David; Isacoff, Ehud Y; Trauner, Dirk
The covalent attachment of synthetic photoswitches is a general approach to impart light sensitivity onto native receptors. It mimics the logic of natural photoreceptors and significantly expands the reach of optogenetics. Here we describe a novel photoswitch design-the photoswitchable orthogonal remotely tethered ligand (PORTL)-that combines the genetically encoded SNAP-tag with photochromic ligands connected to a benzylguanine via a long flexible linker. We use the method to convert the G protein-coupled receptor mGluR2, a metabotropic glutamate receptor, into a photoreceptor (SNAG-mGluR2) that provides efficient optical control over the neuronal functions of mGluR2: presynaptic inhibition and control of excitability. The PORTL approach enables multiplexed optical control of different native receptors using distinct bioconjugation methods. It should be broadly applicable since SNAP-tags have proven to be reliable, many SNAP-tagged receptors are already available, and photochromic ligands on a long leash are readily designed and synthesized.
PMCID:4827557
PMID: 27162996
ISSN: 2374-7943
CID: 2484322

Richard Willstatter and the 1915 Nobel Prize in chemistry

Trauner, Dirk
One hundred years after his Nobel Prize, Richard Willstatter's achievements and the fascinating role he played in 20th century chemistry are discussed in this Essay. Several of his discoveries, such as the anthocyanidins, cyclooctatetraene, the ortho-quinones, and the structure of cocaine, will forever be associated with his name.
PMID: 26291186
ISSN: 1521-3773
CID: 2484352

Evolution of a Unified Strategy for Complex Sesterterpenoids: Progress toward Astellatol and the Total Synthesis of (-)-Nitidasin

Hog, Daniel T; Huber, Florian M E; Jimenez-Oses, Gonzalo; Mayer, Peter; Houk, Kendall N; Trauner, Dirk
Astellatol and nitidasin belong to a subset of sesterterpenoids that share a sterically encumbered trans-hydrindane motif with an isopropyl substituent. In addition, these natural products feature intriguing polycyclic ring systems, posing significant challenges for chemical synthesis. Herein, the evolution of our stereoselective strategy for isopropyl trans-hydrindane sesterterpenoids is detailed. These endeavors included the synthesis of several building blocks, enabling studies toward all molecules of this terpenoid subclass, and of advanced intermediates of our initial route toward a biomimetic synthesis of astellatol. These findings provided the basis for a second-generation and a third-generation approach toward astellatol that eventually culminated in the enantioselective total synthesis of (-)-nitidasin. In particular, a series of substrate-controlled transformations to install the ten stereogenic centers of the target molecule was orchestrated and the carbocyclic backbone was forged in a convergent fashion. Furthermore, the progress toward the synthesis of astellatol is disclosed and insights into some observed yet unexpected diastereoselectivities by detailed quantum-mechanical calculations are provided.
PMCID:4696511
PMID: 26300211
ISSN: 1521-3765
CID: 2484382

Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers

Bruun, Sara; Stoeppler, Daniel; Keidel, Anke; Kuhlmann, Uwe; Luck, Meike; Diehl, Anne; Geiger, Michel-Andreas; Woodmansee, David; Trauner, Dirk; Hegemann, Peter; Oschkinat, Hartmut; Hildebrandt, Peter; Stehfest, Katja
Channelrhodopsins (ChR) are light-gated ion channels of green algae that are widely used to probe the function of neuronal cells with light. Most ChRs show a substantial reduction in photocurrents during illumination, a process named "light adaptation". The main objective of this spectroscopic study was to elucidate the molecular processes associated with light-dark adaptation. Here we show by liquid and solid-state nuclear magnetic resonance spectroscopy that the retinal chromophore of fully dark-adapted ChR is exclusively in an all-trans configuration. Resonance Raman (RR) spectroscopy, however, revealed that already low light intensities establish a photostationary equilibrium between all-trans,15-anti and 13-cis,15-syn configurations at a ratio of 3:1. The underlying photoreactions involve simultaneous isomerization of the C(13) horizontal lineC(14) and C(15) horizontal lineN bonds. Both isomers of this DAapp state may run through photoinduced reaction cycles initiated by photoisomerization of only the C(13) horizontal lineC(14) bond. RR spectroscopic experiments further demonstrated that photoinduced conversion of the apparent dark-adapted (DAapp) state to the photocycle intermediates P500 and P390 is distinctly more efficient for the all-trans isomer than for the 13-cis isomer, possibly because of different chromophore-water interactions. Our data demonstrating two complementary photocycles of the DAapp isomers are fully consistent with the existence of two conducting states that vary in quantitative relation during light-dark adaptation, as suggested previously by electrical measurements.
PMID: 26237332
ISSN: 1520-4995
CID: 2484342

Optical control of NMDA receptors with a diffusible photoswitch

Laprell, Laura; Repak, Emilienne; Franckevicius, Vilius; Hartrampf, Felix; Terhag, Jan; Hollmann, Michael; Sumser, Martin; Rebola, Nelson; DiGregorio, David A; Trauner, Dirk
N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity, learning and memory, and are implicated in various neuronal disorders. We synthesized a diffusible photochromic glutamate analogue, azobenzene-triazole-glutamate (ATG), which is specific for NMDARs and functions as a photoswitchable agonist. ATG is inactive in its dark-adapted trans-isoform, but can be converted into its active cis-isoform using one-photon (near UV) or two-photon (740 nm) excitation. Irradiation with violet light photo-inactivates ATG within milliseconds, allowing agonist removal on the timescale of NMDAR deactivation. ATG is compatible with Ca(2+) imaging and can be used to optically mimic synaptic coincidence detection protocols. Thus, ATG can be used like traditional caged glutamate compounds, but with the added advantages of NMDAR specificity, low antagonism of GABAR-mediated currents, and precise temporal control of agonist delivery.
PMCID:4560805
PMID: 26311290
ISSN: 2041-1723
CID: 2484362

Corrigendum: Total Synthesis of Coralloidolides A, B, C, and E [Correction]

Kimbrough, Thomas J; Roethle, Paul A; Mayer, Peter; Trauner, Dirk
PMID: 26257257
ISSN: 1521-3773
CID: 2484422