Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:moorek09

Total Results:

153


Macrophages in the pathogenesis of atherosclerosis

Moore, Kathryn J; Tabas, Ira
In atherosclerosis, the accumulation of apolipoprotein B-lipoproteins in the matrix beneath the endothelial cell layer of blood vessels leads to the recruitment of monocytes, the cells of the immune system that give rise to macrophages and dendritic cells. Macrophages derived from these recruited monocytes participate in a maladaptive, nonresolving inflammatory response that expands the subendothelial layer due to the accumulation of cells, lipid, and matrix. Some lesions subsequently form a necrotic core, triggering acute thrombotic vascular disease, including myocardial infarction, stroke, and sudden cardiac death. This Review discusses the central roles of macrophages in each of these stages of disease pathogenesis
PMCID:3111065
PMID: 21529710
ISSN: 1097-4172
CID: 131965

HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells

Feig, Jonathan E; Rong, James X; Shamir, Raanan; Sanson, Marie; Vengrenyuk, Yuliya; Liu, Jianhua; Rayner, Katey; Moore, Kathryn; Garabedian, Michael; Fisher, Edward A
HDL cholesterol (HDL-C) plasma levels are inversely related to cardiovascular disease risk. Previous studies have shown in animals and humans that HDL promotes regression of atherosclerosis. We hypothesized that this was related to an ability to promote the loss of monocyte-derived cells (CD68(+), primarily macrophages and macrophage foam cells) from plaques. To test this hypothesis, we used an established model of atherosclerosis regression in which plaque-bearing aortic arches from apolipoprotein E-deficient (apoE(-/-)) mice (low HDL-C, high non-HDL-C) were transplanted into recipient mice with differing levels of HDL-C and non-HDL-C: C57BL6 mice (normal HDL-C, low non-HDL-C), apoAI(-/-) mice (low HDL-C, low non-HDL-C), or apoE(-/-) mice transgenic for human apoAI (hAI/apoE(-/-); normal HDL-C, high non-HDL-C). Remarkably, despite persistent elevated non-HDL-C in hAI/apoE(-/-) recipients, plaque CD68(+) cell content decreased by >50% by 1 wk after transplantation, whereas there was little change in apoAI(-/-) recipient mice despite hypolipidemia. The decreased content of plaque CD68(+) cells after HDL-C normalization was associated with their emigration and induction of their chemokine receptor CCR7. Furthermore, in CD68(+) cells laser-captured from the plaques, normalization of HDL-C led to decreased expression of inflammatory factors and enrichment of markers of the M2 (tissue repair) macrophage state. Again, none of these beneficial changes were observed in the apoAI(-/-) recipients, suggesting a major requirement for reverse cholesterol transport for the beneficial effects of HDL. Overall, these results establish HDL as a regulator in vivo of the migratory and inflammatory properties of monocyte-derived cells in mouse atherosclerotic plaques, and highlight the phenotypic plasticity of these cells
PMCID:3084076
PMID: 21482781
ISSN: 1091-6490
CID: 131816

MicroRNAs in lipid metabolism

Fernandez-Hernando, Carlos; Suarez, Yajaira; Rayner, Katey J; Moore, Kathryn J
PURPOSE OF REVIEW: Although the role for microRNAs (miRNAs) in regulating multiple physiological processes including apoptosis, cell differentiation, and cancer is well established, the importance of these tiny RNAs in regulating lipid metabolism has only recently been uncovered. This review summarizes the evidence for a critical role of miRNAs in regulating lipid metabolism. RECENT FINDINGS: Lipid metabolism is tightly regulated at the cellular level. In addition to classic transcriptional regulation of cholesterol metabolism (e.g. by SREBP and LXR), members of a class of noncoding RNAs termed miRNAs have now been identified to be potent post-transcriptional regulators of lipid metabolism genes involved in cholesterol homeostasis and fatty acid oxidation. Several reports have recently shown that miR-33 regulates cholesterol efflux and HDL biogenesis by downregulating the expression of the ABC transporters, ABCA1 and ABCG1. In addition, miR-33 also inhibits the translation of several transcripts encoding proteins involved in fatty acid beta-oxidation including CPT1a, CROT, and HADHB, thereby reducing fatty acid degradation. Other miRNAs including miR-122, miR-370, miR-335, and miR-378/378*, miR-27 and miR-125a-5p have been implicated in regulating cholesterol homeostasis, fatty acid metabolism and lipogenesis. SUMMARY: Recent advances in the understanding of the regulation of lipid metabolism indicate that miRNAs play major roles in regulating cholesterol and fatty acid metabolism. These new findings may open new avenues for the treatment of dyslipidemias
PMCID:3096067
PMID: 21178770
ISSN: 1473-6535
CID: 128788

Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells

Brundert, May; Heeren, Joerg; Merkel, Martin; Carambia, Antonella; Herkel, Johannes; Groitl, Peter; Dobner, Thomas; Ramakrishnan, Rajasekhar; Moore, Kathryn J; Rinninger, Franz
The mechanisms of HDL-mediated cholesterol transport from peripheral tissues to the liver are incompletely defined. Here the function of scavenger receptor cluster of differentiation 36 (CD36) for HDL uptake by the liver was investigated. CD36 knockout (KO) mice, which were the model, have a 37% increase (P = 0.008) of plasma HDL cholesterol compared with wild-type (WT) littermates. To explore the mechanism of this increase, HDL metabolism was investigated with HDL radiolabeled in the apolipoprotein ((1)(2)I) and cholesteryl ester (CE, [(3)H]) moiety. Liver uptake of [(3)H] and (1)(2)I from HDL decreased in CD36 KO mice and the difference, i. e. hepatic selective CE uptake ([(3)H](1)(2)I), declined (-33%, P = 0.0003) in CD36 KO compared with WT mice. Hepatic HDL holo-particle uptake ((1)(2)I) decreased (-29%, P = 0.0038) in CD36 KO mice. In vitro, uptake of (1)(2)I-/[(3)H]HDL by primary liver cells from WT or CD36 KO mice revealed a diminished HDL uptake in CD36-deficient hepatocytes. Adenovirus-mediated expression of CD36 in cells induced an increase in selective CE uptake from HDL and a stimulation of holo-particle internalization. In conclusion, CD36 plays a role in HDL uptake in mice and by cultured cells. A physiologic function of CD36 in HDL metabolism in vivo is suggested
PMCID:3284166
PMID: 21217164
ISSN: 0022-2275
CID: 134207

Deletion of ABCA1 and ABCG1 impairs macrophage migration because of increased Rac1 signaling

Pagler, Tamara A; Wang, Mi; Mondal, Mousumi; Murphy, Andrew J; Westerterp, Marit; Moore, Kathryn J; Maxfield, Frederick R; Tall, Alan R
RATIONALE: Reduced plasma cholesterol and increased high-density lipoprotein (HDL) levels promote regression of atherosclerosis, in a process characterized by lipid unloading and emigration of macrophages from lesions. In contrast free cholesterol loading of macrophages leads to imbalanced Rac1/Rho activities and impaired chemotaxis. OBJECTIVE: To study the role of HDL and the ATP-binding cassette transporters ABCA1 and ABCG1 in modulating the chemotaxis of macrophages. METHODS AND RESULTS: Abca1(-/-)Abcg1(-/-) mouse macrophages displayed profoundly impaired chemotaxis both in a Transwell chamber assay and in the peritoneal cavity of wild-type (WT) mice. HDL reversed impaired chemotaxis in free cholesterol-loaded WT macrophages but was without effect in Abca1(-/-)Abcg1(-/-) cells, whereas cyclodextrin was effective in both. Abca1(-/-)Abcg1(-/-) macrophages had markedly increased Rac1 activity and increased association of Rac1 with the plasma membrane (PM). Their defective chemotaxis was reversed by a Rac1 inhibitor. To gain a better understanding of the role of transporters in PM cholesterol movement, we measured transbilayer PM sterol distribution. In WT macrophages, the majority of cholesterol was located on the inner leaflet, whereas on upregulation of transporters by liver X receptor activation, PM sterol was shifted to the outer leaflet, where it could be removed by HDL. Abca1(-/-)Abcg1(-/-) macrophages showed increased PM sterol content and defective redistribution of sterol to the outer leaflet. CONCLUSIONS: Deletion of ABCA1 and ABCG1 causes an increased cholesterol content on the inner leaflet of the PM, associated with increased Rac1 PM localization, activation, and impairment of migration. ABCA1 and ABCG1 facilitate macrophage chemotaxis by promoting PM transbilayer cholesterol movement and may contribute to the ability of HDL to promote regression of atherosclerosis
PMCID:3097897
PMID: 21148432
ISSN: 1524-4571
CID: 134118

Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice

Higashimori, Mie; Tatro, Jeffrey B; Moore, Kathryn J; Mendelsohn, Michael E; Galper, Jonas B; Beasley, Debbie
OBJECTIVE: Atherosclerosis encompasses a conspicuously maladaptive inflammatory response that might involve innate immunity. Here, we compared the role of Toll-like receptor 4 (TLR4) with that of TLR2 in intimal foam cell accumulation and inflammation in apolipoprotein E (ApoE) knockout (KO) mice in vivo and determined potential mechanisms of upstream activation and downstream action. METHODS AND RESULTS: We measured lipid accumulation and gene expression in the lesion-prone lesser curvature of the aortic arch. TLR4 deficiency reduced intimal lipid by approximately 75% in ApoE KO mice, despite unaltered total serum cholesterol and triglyceride levels, whereas TLR2 deficiency reduced it by approximately 45%. TLR4 deficiency prevented the increased interleukin-1alpha (IL-1alpha) and monocyte chemoattractant protein-1 mRNA levels seen within lesional tissue, and it also lowered serum IL-1alpha levels. Smooth muscle cells (SMC) were present within the intima of the lesser curvature of the aortic arch at this early lesion stage, and they enveloped and permeated nascent lesions, which consisted of focal clusters of foam cells. Cholesterol enrichment of SMC in vitro stimulated acyl-coenzyme A:cholesterol acyltransferase-1 mRNA expression, cytoplasmic cholesterol ester accumulation, and monocyte chemoattractant protein-1 mRNA and protein expression in a TLR4-dependent manner. CONCLUSIONS: TLR4 contributes to early-stage intimal foam cell accumulation at lesion-prone aortic sites in ApoE KO mice, as does TLR2 to a lesser extent. Intimal SMC surround and penetrate early lesions, where TLR4 signaling within them may influence lesion progression
PMCID:3034636
PMID: 20966403
ISSN: 1524-4636
CID: 138239

microRNAs and cholesterol metabolism

Moore, Kathryn J; Rayner, Katey J; Suarez, Yajaira; Fernandez-Hernando, Carlos
Cholesterol metabolism is tightly regulated at the cellular level. In addition to classic transcriptional regulation of cholesterol metabolism (e.g. by SREBP and LXR), members of a class of non-coding RNAs termed microRNAs (miRNAs) have recently been identified to be potent post-transcriptional regulators of lipid metabolism genes, including cholesterol homeostasis. We and others have recently shown that miR-33 regulates cholesterol efflux and HDL biogenesis by downregulating the expression of the ABC transporters, ABCA1 and ABCG1. In addition to miR-33, miR-122 and miR-370 have been shown to play important roles in regulating cholesterol and fatty acid metabolism. These new data suggest important roles of microRNAs in the epigenetic regulation of cholesterol metabolism and have opened new avenues for the treatment of dyslipidemias
PMCID:2991595
PMID: 20880716
ISSN: 1879-3061
CID: 138240

Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress

Seimon, Tracie A; Nadolski, Marissa J; Liao, Xianghai; Magallon, Jorge; Nguyen, Matthew; Feric, Nicole T; Koschinsky, Marlys L; Harkewicz, Richard; Witztum, Joseph L; Tsimikas, Sotirios; Golenbock, Douglas; Moore, Kathryn J; Tabas, Ira
Macrophage apoptosis in advanced atheromata, a key process in plaque necrosis, involves the combination of ER stress with other proapoptotic stimuli. We show here that oxidized phospholipids, oxidized LDL, saturated fatty acids (SFAs), and lipoprotein(a) trigger apoptosis in ER-stressed macrophages through a mechanism requiring both CD36 and Toll-like receptor 2 (TLR2). In vivo, macrophage apoptosis was induced in SFA-fed, ER-stressed wild-type but not Cd36(/) or Tlr2(/) mice. For atherosclerosis, we combined TLR2 deficiency with that of TLR4, which can also promote apoptosis in ER-stressed macrophages. Advanced lesions of fat-fed Ldlr(/) mice transplanted with Tlr4(/)Tlr2(/) bone marrow were markedly protected from macrophage apoptosis and plaque necrosis compared with WT -->Ldlr(/) lesions. These findings provide insight into how atherogenic lipoproteins trigger macrophage apoptosis in the setting of ER stress and how TLR activation might promote macrophage apoptosis and plaque necrosis in advanced atherosclerosis
PMCID:2991104
PMID: 21035758
ISSN: 1932-7420
CID: 114148

MiR-33 contributes to the regulation of cholesterol homeostasis

Rayner, Katey J; Suarez, Yajaira; Davalos, Alberto; Parathath, Saj; Fitzgerald, Michael L; Tamehiro, Norimasa; Fisher, Edward A; Moore, Kathryn J; Fernandez-Hernando, Carlos
Cholesterol metabolism is tightly regulated at the cellular level. Here we show that miR-33, an intronic microRNA (miRNA) located within the gene encoding sterol-regulatory element-binding factor-2 (SREBF-2), a transcriptional regulator of cholesterol synthesis, modulates the expression of genes involved in cellular cholesterol transport. In mouse and human cells, miR-33 inhibits the expression of the adenosine triphosphate-binding cassette (ABC) transporter, ABCA1, thereby attenuating cholesterol efflux to apolipoprotein A1. In mouse macrophages, miR-33 also targets ABCG1, reducing cholesterol efflux to nascent high-density lipoprotein (HDL). Lentiviral delivery of miR-33 to mice represses ABCA1 expression in the liver, reducing circulating HDL levels. Conversely, silencing of miR-33 in vivo increases hepatic expression of ABCA1 and plasma HDL levels. Thus, miR-33 appears to regulate both HDL biogenesis in the liver and cellular cholesterol efflux
PMCID:3114628
PMID: 20466885
ISSN: 1095-9203
CID: 138135

Phagocytosis and Phagosome Acidification Are Required for Pathogen Processing and MyD88-Dependent Responses to Staphylococcus aureus

Ip, W K Eddie; Sokolovska, Anna; Charriere, Guillaume M; Boyer, Laurent; Dejardin, Stephanie; Cappillino, Michael P; Yantosca, L Michael; Takahashi, Kazue; Moore, Kathryn J; Lacy-Hulbert, Adam; Stuart, Lynda M
Innate immunity is vital for protection from microbes and is mediated by humoral effectors, such as cytokines, and cellular immune defenses, including phagocytic cells (e.g., macrophages). After internalization by phagocytes, microbes are delivered into a phagosome, a complex intracellular organelle with a well-established and important role in microbial killing. However, the role of this organelle in cytokine responses and microbial sensing is less well defined. In this study, we assess the role of the phagosome in innate immune sensing and demonstrate the critical interdependence of phagocytosis and pattern recognition receptor signaling during response to the Gram-positive bacteria Staphylococcus aureus. We show that phagocytosis is essential to initiate an optimal MyD88-dependent response to Staphylococcus aureus. Prior to TLR-dependent cytokine production, bacteria must be engulfed and delivered into acidic phagosomes where acid-activated host enzymes digest the internalized bacteria to liberate otherwise cryptic bacterial-derived ligands that initiate responses from the vacuole. Importantly, in macrophages in which phagosome acidification is perturbed, the impaired response to S. aureus can be rescued by the addition of lysostaphin, a bacterial endopeptidase active at neutral pH that can substitute for the acid-activated host enzymes. Together, these observations delineate the interdependence of phagocytosis with pattern recognition receptor signaling and suggest that therapeutics to augment functions and signaling from the vacuole may be useful strategies to increase host responses to S. aureus
PMCID:2935932
PMID: 20483752
ISSN: 1550-6606
CID: 109839