Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:pc92

Total Results:

496


Alumina-toughened zirconia for dental applications: Physicochemical, mechanical, optical, and residual stress characterization after artificial aging

Bergamo, Edmara T P; Cardoso, Karina B; Lino, Lucas F O; Campos, Tiago M B; Monteiro, Kelli N; Cesar, Paulo F; Genova, Luis A; Thim, Gilmar P; Coelho, Paulo G; Bonfante, Estevam A
To characterize the physicomechanical properties of an alumina-toughened zirconia (ATZ). ATZ synthesis consisted of the addition of alumina particles in an yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) matrix. Specimens were obtained by uniaxial and isostatic pressing ATZ and 3Y-TZP powders and sintering at 1600°C/1 h and 1550°C/1 h, respectively. Crystalline content and residual stress were evaluated using X-ray diffraction (XRD). Microstructure was characterized by scanning electron microscopy (SEM). Optical properties were determined by reflectance test. Mechanical properties were assessed by biaxial flexural strength test. All analyses were performed before and after aging (134°C, 20 h, 2 bar). XRD and SEM revealed a typical ATZ and 3Y-TZP crystalline content, chiefly tetragonal phase, with a dense polycrystalline matrix, though a smaller grain size for ATZ. Aging triggered a similar monoclinic transformation for both systems; however, ATZ exhibited higher residual compressive stresses than 3Y-TZP. While as-processed 3Y-TZP demonstrated significantly higher characteristic strength relative to ATZ, no significant difference was observed after aging (~215 MPa increase in the ATZ strength). ATZ presented significantly higher opacity relative to 3Y-TZP, although aging significantly increased the translucency of both systems (increase difference significantly higher in the 3Y-TZP compared to ATZ). ATZ physicomechanical properties support its applicability in the dental field, with a lower detrimental effect of aging relative to 3Y-TZP.
PMID: 33314536
ISSN: 1552-4981
CID: 4764952

Physicochemical and mechanical characterization of a fiber-reinforced composite used as frameworks of implant-supported prostheses

Bergamo, Edmara T P; Bastos, Tiago M C; Lopes, Adolfo C O; de Araujo Júnior, Everardo N S; Coelho, Paulo G; Benalcazar Jalkh, Ernesto B; Zahoui, Abbas; Bonfante, Estevam A
OBJECTIVES/OBJECTIVE:To characterize the physicochemical and mechanical properties of a milled fiber-reinforced composite (FRC) for implant-supported fixed dental prostheses (FDPs). METHODS:connector area and 2.5 mm-height lingual extension). A hybrid resin composite was veneered onto the frameworks. FDPs were subjected to step-stress accelerated-life fatigue testing until fracture or suspension. Use level probability Weibull curves at 300 N were plotted and the reliability for 100,000 cycles at 300, 600 and 800 N was calculated. Fractographic analysis was performed by stereomicroscope and SEM. RESULTS:The FRC consisted of an epoxy resin (∼25%) matrix reinforced with inorganic particles and glass fibers (∼75%). Multi-layer continuous regular-geometry fibers were densely arranged in a parallel and bidirectional fashion in the resin matrix. Fatigue analysis demonstrated high probability of survival (99%) for FDPs at 300 N, irrespective of framework design. Conventional FDPs showed a progressive decrease in the reliability at 600 (84%) and 800 N (19%), whereas modified FDPs reliability significantly reduced only at 800 N (75%). The chief failure modes for FRC FDPs were cohesive fracture of the veneering composite on lower loads and adhesive fracture of the veneering composite at higher loads. SIGNIFICANCE/CONCLUSIONS:Milled epoxy resin matrix reinforced with glass fibers composite resulted in high probability of survival in the implant-supported prosthesis scenario.
PMID: 33865619
ISSN: 1879-0097
CID: 4878022

Osseodensification Versus Subtractive Drilling Techniques in Bone Healing and Implant Osseointegration: Ex Vivo Histomorphologic/Histomorphometric Analysis in a Low-Density Bone Ovine Model

Mullings, Otto; Tovar, Nick; Abreu de Bortoli, João Paulo; Parra, Marcelo; Torroni, Andrea; Coelho, Paulo G; Witek, Lukasz
PURPOSE/OBJECTIVE:The aim of this study was to qualitatively and quantitatively assess the effect of osteotomy preparation by conventional, subtractive, or osseodensification instrumentation on osteotomies, treated with or without endosteal implants, and healing capacity. MATERIALS AND METHODS/METHODS:Seven sheep were used, and 56 osteotomies were made in the left and right ilium of the sheep (n = 8/sheep [4 per side/time point (3 and 6 weeks)]). Two different instrumentation techniques were used: (1) conventional/regular drilling in a three-step series of a 2-mm pilot and 3.2-mm and 3.8-mm twist drills and (2) osseodensification drilling with a Densah Bur 2.0-mm pilot and 2.8-mm and 3.8-mm multi-fluted tapered burs. Drilling was performed at 1,100 rpm with saline irrigation. RESULTS:Qualitative histomorphometric evaluation of the osteotomies after 3 and 6 weeks did not indicate any healing impairment due to the instrumentation. In all samples, histologic examination suggested bone remodeling and growth (empty and treated with an implant), irrespective of preparation technique. Osteotomies prepared using the osseodensification instrumentation showed the existence of bone chips autografted into the trabecular spaces along the length of the osteotomy wall. CONCLUSION/CONCLUSIONS:The osseodensification group yielded higher osseointegration rates, as distinguished through qualitative assessment, bone-to-implant contact, and bone-area-fraction occupancy, indicating an increased osteogenic potential in osteotomies prepared using the osseodensification technique.
PMID: 34698715
ISSN: 1942-4434
CID: 5072102

Osseodensification drilling vs conventional manual instrumentation technique for posterior lumbar fixation: Ex-vivo mechanical and histomorphological analysis in an ovine model

Torroni, Andrea; Lima Parente, Paulo Eduardo; Witek, Lukasz; Hacquebord, Jacques Henri; Coelho, Paulo G
Lumbar fusion is a procedure associated with several indications, but screw failure remains a major complication, with an incidence ranging 10% to 50%. Several solutions have been proposed, ranging from more efficient screw geometry to enhance bone quality, conversely, drilling instrumentation have not been thoroughly explored. The conventional instrumentation (regular [R]) techniques render the bony spicules excavated impractical, while additive techniques (osseodensification [OD]) compact them against the osteotomy walls and predispose them as nucleating surfaces/sites for new bone. This work presents a case-controlled split model for in vivo/ex vivo comparison of R vs OD osteotomy instrumentation in posterior lumbar fixation in an ovine model to determine feasibility and potential advantages of the OD drilling technique in terms of mechanical and histomorphology outcomes. Eight pedicle screws measuring 4.5 mm × 45 mm were installed in each lumbar spine of eight adult sheep (four per side). The left side underwent R instrumentation, while the right underwent OD drilling. The animals were killed at 6- and 12-week and the vertebrae removed. Pullout strength and non-decalcified histologic analysis were performed. Significant mechanical stability differences were observed between OD and R groups at 6- (387 N vs 292 N) and 12-week (312 N vs 212 N) time points. Morphometric analysis did not detect significant differences in bone area fraction occupancy between R and OD groups, while it is to note that OD showed increased presence of bone spiculae. Mechanical pullout testing demonstrated that OD drilling provided higher degrees of implant anchoring as a function of time, whereas a significant reduction was observed for the R group.
PMID: 32369220
ISSN: 1554-527x
CID: 4439042

Osseodensification effect on implants primary and secondary stability: Multicenter controlled clinical trial

Bergamo, Edmara T P; Zahoui, Abbas; Barrera, Raúl Bravo; Huwais, Salah; Coelho, Paulo G; Karateew, Edward Dwayne; Bonfante, Estevam A
BACKGROUND:Osseodensification (OD) has shown to improve implant stability; however, the influences of implant design, dimensions, and surgical site characteristics are unknown. PURPOSE/OBJECTIVE:To compare the insertion torque (IT) and temporal implant stability quotients (ISQ) of implants placed via OD or subtractive drilling (SD). MATERIALS AND METHODS/METHODS:This multicenter controlled clinical trial enrolled 56 patients, whom were in need of at least 2 implants (n = 150 implants). Patients were treated with narrow, regular, or wide implants and short, regular, or long implants in the anterior or posterior region of the maxilla or in the posterior region of the mandible. Osteotomies were performed following manufacturers recommendation. IT was recorded with a torque indicator. ISQ was recorded with resonance frequency analysis immediately after surgery, 3 and 6 weeks. RESULTS:Data complied as a function of osteotomy indicated significantly higher IT for OD relative to SD. OD outperformed conventional SD for all pairwise comparisons of arches (maxilla and mandible) and areas operated (anterior and posterior), diameters and lengths of the implants, except for short implants. Overall, ISQ data also demonstrated significantly higher values for OD compared to SD regardless of the healing period. Relative to immediate readings, ISQ values significantly decreased at 3 weeks, returning to immediate levels at 6 weeks; however, ISQ values strictly remained above 68 throughout healing time for OD. Data as a function of arch operated and osteotomy, area operated and osteotomy, implant dimensions and osteotomy, also exhibited higher ISQ values for OD relative to SD on pairwise comparisons, except for short implants. CONCLUSIONS:OD demonstrated higher IT and temporal ISQ values relative to SD, irrespective of arch and area operated as well as implant design and dimension, with an exception for short implants. Future studies should focus on biomechanical parameters and bone level change evaluation after loading.
PMID: 34047046
ISSN: 1708-8208
CID: 4895002

Three-Dimensionally-Printed Bioactive Ceramic Scaffolds: Construct Effects on Bone Regeneration

Fama, Christopher; Kaye, Gabriel J; Flores, Roberto; Lopez, Christopher D; Bekisz, Jonathan M; Torroni, Andrea; Tovar, Nick; Coelho, Paulo G; Witek, Lukasz
BACKGROUND/PURPOSE/OBJECTIVE:The utilization of three-dimensionally (3D)-printed bioceramic scaffolds composed of beta-tricalcium phosphate in conjunction with dipyridamole have shown to be effective in the osteogenesis of critical bone defects in both skeletally immature and mature animals. Furthermore, previous studies have proven the dura and pericranium's osteogenic capacity in the presence of 3D-printed scaffolds; however, the effect galea aponeurotica on osteogenesis in the presence of 3D scaffolds remains unclear. METHOD/DESCRIPTION/UNASSIGNED:Critical-sized (11 mm) bilateral calvarial defects were created in 35-day old rabbits (n = 7). Two different 3D scaffolds were created, with one side of the calvaria being treated with a solid nonporous cap and the other with a fully porous cap. The solid cap feature was designed with the intention of preventing communication of the galea and the ossification site, while the porous cap permitted such communication. The rabbits were euthanized 8 weeks postoperatively. Calvaria were analyzed using microcomputed tomography, 3D reconstruction, and nondecalcified histologic sectioning in order assess differences in bone growth between the two types of scaffolding. RESULTS:Scaffolds with the solid (nonporous) cap yielded greater percent bone volume (P = 0.012) as well as a greater percent potential bone (P = 0.001) compared with the scaffolds with a porous cap. The scaffolds with porous caps also exhibited a greater percent volume of soft tissue (P < 0.001) presence. There were no statistically significant differences detected in scaffold volume. CONCLUSION/CONCLUSIONS:A physical barrier preventing the interaction of the galea aponeurotica with the scaffold leads to significantly increased calvarial bone regeneration in comparison with the scaffolds allowing for this interaction. The galea's interaction also leads to more soft tissue growth hindering the in growth of bone in the porous-cap scaffolds.
PMID: 33003153
ISSN: 1536-3732
CID: 5050092

Survival of implant-supported resin-matrix ceramic crowns: In silico and fatigue analyses

Bergamo, Edmara T P; Yamaguchi, Satoshi; Coelho, Paulo G; Lopes, Adolfo C O; Lee, Chunwoo; Bonfante, Gerson; Benalcázar Jalkh, Ernesto B; de Araujo-Júnior, Everardo N S; Bonfante, Estevam A
OBJECTIVE:To evaluate the fatigue survival, failure mode, and maximum principal stress (MP Stress) and strain (MP Strain) of resin-matrix ceramic systems used for implant-supported crowns. METHODS:Identical molar crowns were milled using four resin-matrix ceramics (n = 21/material): (i) Shofu Hard, (ii) Cerasmart (iii) Enamic, and (iv) Shofu HC. Crowns were cemented on the abutments, and the assembly underwent step-stress accelerated-life testing. Use level probability Weibull curves at 300 N were plotted and the reliability at 300, 500 and 800 N was calculated for a mission of 50,000 cycles. Fractographic analysis was performed using stereomicroscope and scanning electron microscope. MP Stress and MP Strain were determined by finite element analysis. RESULTS:While fatigue dictated failures for Cerasmart (β > 1), material strength controlled Shofu Hard, Enamic, and Shofu HC failures (β < 1). Shofu HC presented lower reliability at 300 N (79%) and 500 N (59%) than other systems (>90%), statistically different at 500 N. Enamic (57%) exhibited a significant reduction in the probability of survival at 800 N, significantly lower than Shofu Hard and Cerasmart; however, higher than Shofu HC (12%). Shofu Hard and Cerasmart (>93%) demonstrated no significant difference for any calculated mission (300-800 N). Failure mode predominantly involved resin-matrix ceramic fracture originated from occlusal cracks, corroborating with the MP Stress and Strain location, propagating through the proximal and cervical margins. SIGNIFICANCE/CONCLUSIONS:All resin-matrix ceramics crowns demonstrated high probability of survival in a physiological molar load, whereas Shofu Hard and Cerasmart outperformed Enamic and Shofu HC at higher loads. Material fracture comprised the main failure mode.
PMID: 33483102
ISSN: 1879-0097
CID: 4819212

Effect of Surgical Instrumentation Variables on the Osseointegration of Narrow- and Wide-Diameter Short Implants

Witek, Lukasz; Parra, Marcelo; Tovar, Nick; Alifarag, Adham; Lopez, Christopher D; Torroni, Andrea; Bonfante, Estevam A; Coelho, Paulo G
PURPOSE/OBJECTIVE:The aim of the present study was to systematically analyze how a multifactorial surgical instrumentation approach affects osseointegration on both narrow-diameter and wide-diameter short implants. MATERIALS AND METHODS/METHODS:Twelve skeletally mature female sheep were used in the study along with 144 plateau-root-form healing chamber titanium (Ti-6Al-4V) implants (Bicon LLC, Boston, MA), evenly distributed between narrow (3.5 mm) and wide (6.0 mm) diameters. The presence or the absence of irrigation, different drilling speeds, and 2 time points quantifying bone-implant contact (BIC) and bone area fraction occupancy (BAFO) to evaluate the osteogenic parameters around the implants. RESULTS:There were no signs of inflammation, infection, or failure of the implants observed at either healing period. The narrow 3.5-mm implant, at 6 weeks, yielded significant differences in terms of BIC at a drilling speed of 50 rotations per minute (RPM), with higher values of the samples using irrigation (30.6 ± 6.1%) compared with those without (19.7 ± 6.1%). No statistical differences were detected for 500 and 1,000 RPM with or without irrigation. The wide 6-mm diameter implant showed differences with respect to drilling speed, 500 and 1,000 RPM, with higher values associated with samples subjected to irrigation. BAFO results, for both diameters, only detected statistical differences between the 2 times (3 vs 6 weeks); no statistical differences were detected when evaluating as a function of time, drilling speed, and irrigation. CONCLUSIONS:Surgical instrumentation variables (ie, drilling speed [RPM] and irrigation) yielded to be more of an effect for BIC at longer healing time (6 weeks) for the wider implants. Furthermore, deploying narrow or wide plateau-root-form implants, where conditions allow, has shown to be a safe alternative, considering the high BIC and BAFO values observed, independent of irrigation.
PMID: 33137302
ISSN: 1531-5053
CID: 4759432

Comparison of Surface Treatments of Endosteal Implants in Ovariectomized Rabbits

Parra, Marcelo; Elias, Carlos Nelson; Olate, Sergio; Witek, Lukasz; Coelho, Paulo G
PURPOSE/OBJECTIVE:The aim of this work was to evaluate osseointegration of endosteal implants with two different surface treatments at early stages (~3 weeks) in the tibia of healthy and ovariectomized rabbits. MATERIALS AND METHODS/METHODS:The study comprised 10 adult New Zealand female rabbits (Oryctolagus cuniculus; 6 months and 3.0 ± 0.5 kg). Five animals were subjected to bilateral ovariectomy to mimic osteoporotic-like conditions, and the remaining rabbits (n = 5) served as the healthy control group. After 3 months, specimens from the ovariectomized and control groups were subject to implant placement in both tibiae, using two different types of surface treatment. A total of 36 implants were placed, n = 18 acid-etched and n = 18 anodized. After 3 weeks, euthanasia of the animals was performed, and samples were obtained for processing. Bone-to-implant contact and bone area fraction occupancy were quantified to evaluate the osseointegration parameters around the implant surface and within the thread area, respectively, and nanoindentation tests were performed to determine elastic modulus and hardness of the new bone. Both analyses were performed on the entire implant (total), as well as individually within the cortical and bone marrow cavity area. RESULTS:All animals were evaluated with no signs of infection or postoperative complications. The total bone-to-implant contact and bone area fraction occupancy results, independent of surface treatment, yielded significant differences between the ovariectomized and control groups (P = .002 and P < .001, respectively). In the marrow cavity, analyzing the surface treatments independently as a function of bone condition, the only differences detected were in the anodized treatment (P = .04). Regarding the elastic modulus, differences were detected only with the anodized implants between the ovariectomized and control groups (P = .015). CONCLUSION/CONCLUSIONS:At 3 weeks after implant placement, there were better osseointegration values of the implants in the healthy control group compared with the ovariectomized group independent of surface treatment. Also, specifically in the medullary region of the rabbit tibia, the acid-etched implants had more uniform osseointegration values in conditions of low-quality bone in comparison to the anodized implants, histomorphometrically and biomechanically.
PMID: 33600521
ISSN: 1942-4434
CID: 4821002

Retention of zirconia crowns to Ti-base abutments: effect of luting protocol, abutment treatment and autoclave sterilization

Bergamo, Edmara T. P.; Zahoui, Abbas; Amorin Ikejiri, Larissa Luri; Marun, Manoela; da Silva, Kimberly Peixoto; Coelho, Paulo G.; Soares, Simone; Bonfante, Estevam A.
ISI:000668171300007
ISSN: 1883-1958
CID: 5017242