Searched for: in-biosketch:yes
person:rothee02
Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque
Agullo-Pascual, Esperanza; Reid, Dylan A; Keegan, Sarah; Sidhu, Manavjeet; Fenyo, David; Rothenberg, Eli; Delmar, Mario
AIMS: Cell function requires formation of molecular clusters localized to discrete subdomains. The composition of these interactomes, and their spatial organization, cannot be discerned by conventional microscopy given the resolution constraints imposed by the diffraction limit of light ( approximately 200-300 nm). Our aims were (i) Implement single-molecule imaging and analysis tools to resolve the nano-scale architecture of cardiac myocytes. (ii) Using these tools, to map two molecules classically defined as components 'of the desmosome' and 'of the gap junction', and defined their spatial organization. METHODS AND RESULTS: We built a set-up on a conventional inverted microscope using commercially available optics. Laser illumination, reducing, and oxygen scavenging conditions were used to manipulate the blinking behaviour of individual fluorescent reporters. Movies of blinking fluorophores were reconstructed to generate subdiffraction images at approximately 20 nm resolution. With this method, we characterized clusters of connexin43 (Cx43) and of 'the desmosomal protein' plakophilin-2 (PKP2). In about half of Cx43 clusters, we observed overlay of Cx43 and PKP2 at the Cx43 plaque edge. SiRNA-mediated loss of Ankyrin-G expression yielded larger Cx43 clusters, of less regular shape, and larger Cx43-PKP2 subdomains. The Cx43-PKP2 subdomain was validated by a proximity ligation assay (PLA) and by Monte-Carlo simulations indicating an attraction between PKP2 and Cx43. CONCLUSIONS: (i) Super-resolution fluorescence microscopy, complemented with Monte-Carlo simulations and PLAs, allows the study of the nanoscale organization of an interactome in cardiomyocytes. (ii) PKP2 and Cx43 share a common hub that permits direct physical interaction. Its relevance to excitability, electrical coupling, and arrhythmogenic right ventricular cardiomyopathy, is discussed.
PMCID:3797628
PMID: 23929525
ISSN: 0008-6363
CID: 573722
Inhibitors of SCF-Skp2/Cks1 E3 Ligase Block Estrogen-Induced Growth Stimulation and Degradation of Nuclear p27kip1: Therapeutic Potential for Endometrial Cancer
Pavlides, Savvas C; Huang, Kuang-Tzu; Reid, Dylan A; Wu, Lily; Blank, Stephanie V; Mittal, Khushbakhat; Guo, Lankai; Rothenberg, Eli; Rueda, Bo; Cardozo, Timothy; Gold, Leslie I
In many human cancers, the tumor suppressor, p27(kip1) (p27), a cyclin-dependent kinase inhibitor critical to cell cycle arrest, undergoes perpetual ubiquitin-mediated proteasomal degradation by the E3 ligase complex SCF-Skp2/Cks1 and/or cytoplasmic mislocalization. Lack of nuclear p27 causes aberrant cell cycle progression, and cytoplasmic p27 mediates cell migration/metastasis. We previously showed that mitogenic 17-beta-estradiol (E2) induces degradation of p27 by the E3 ligase Skp1-Cullin1-F-Box- S phase kinase-associated protein2/cyclin dependent kinase regulatory subunit 1 in primary endometrial epithelial cells and endometrial carcinoma (ECA) cell lines, suggesting a pathogenic mechanism for type I ECA, an E2-induced cancer. The current studies show that treatment of endometrial carcinoma cells-1 (ECC-1) with small molecule inhibitors of Skp2/Cks1 E3 ligase activity (Skp2E3LIs) stabilizes p27 in the nucleus, decreases p27 in the cytoplasm, and prevents E2-induced proliferation and degradation of p27 in endometrial carcinoma cells-1 and primary ECA cells. Furthermore, Skp2E3LIs increase p27 half-life by 6 hours, inhibit cell proliferation (IC50, 14.3muM), block retinoblastoma protein (pRB) phosphorylation, induce G1 phase block, and are not cytotoxic. Similarly, using super resolution fluorescence localization microscopy and quantification, Skp2E3LIs increase p27 protein in the nucleus by 1.8-fold. In vivo, injection of Skp2E3LIs significantly increases nuclear p27 and reduces proliferation of endometrial epithelial cells by 42%-62% in ovariectomized E2-primed mice. Skp2E3LIs are specific inhibitors of proteolytic degradation that pharmacologically target the binding interaction between the E3 ligase, SCF-Skp2/Cks1, and p27 to stabilize nuclear p27 and prevent cell cycle progression. These targeted inhibitors have the potential to be an important therapeutic advance over general proteasome inhibitors for cancers characterized by SCF-Skp2/Cks1-mediated destruction of nuclear p27.
PMCID:3800755
PMID: 24035998
ISSN: 0013-7227
CID: 627252
Super-resolution microscopy to visualize the Connexin43/Plakophilin-2 complex. Structure of a molecular substrate of arvc [Meeting Abstract]
Pascual, E A; Reld, D A; Rothenberg, E; Delmar, M
Introduction: Most cases of familial arrhythmogenic right ventricular cardiomyopathy (ARVC) associate with mutations in desmosomal proteins, most commonly plakophilin-2 (PKP2). A crosstalk between PKP2 and connexin43 (Cx43) has been proposed as a pathogenic mechanism. We speculate that a) Cx43 and PKP2 are in close physical proximity, allowing for direct intermolecular interaction and b) the structure of the Cx43- PKP2 complex depends on expression of the scaffolding protein ankyrin-G (AnkG). To test these hypotheses, we implemented a novel method (direct stochastic reconstruction microscopy; dSTORM) that allows for spatial resolution of fluorescence microscopy images in the nanoscale. Methods: Neonatal rat ventricular myocytes were labeled with antibodies to Cx43 and PKP2 and imaged using a custom- made microscopy system. On-off cycles of light emission were recorded in 2000 frames, and the image reconstructed by custom-made software. Cells were treated with siRNAfor AnkG, or non-targeted constructs, and the characteristics of Cx43 and PKP2 clusters compared to control. Results: Optical resolution of dSTORM images was 20 nm. Cx43 was found in circular clusters of two predominant sizes: 13313+/-328 and 25035+226 nm^2. PKP2 clusters were of various shapes and widespread size distribution, but consistently found less than 40 nm away from a Cx43 plaque, with signals overlapping on the edges of the plaques. Loss of AnkG expression drastically altered Cx43 cluster morphology becoming less circular and of a larger dimension. Close proximity to PKP2 was maintained. Yet, the total number of PKP2 clusters was significantly decreased. Conclusion: We implemented a method that breaks the optical resolution barrier imposed by the diffraction properties of light (~300 nm), to reach a range previously reserved to electron microscopy (~20 nm). We demonstrate that PKP2 populates the edge of Cx43 plaques (the perinexus). Cx43 cluster architecture depends on AnkG expression and likely, Cx43-cytoskeletal interacti!
EMBASE:71066555
ISSN: 1547-5271
CID: 369492
Heterogeneity of ATP-sensitive K+ channels in cardiac myocytes: Enrichment at the intercalated disk [Meeting Abstract]
Hong, M; Bao, L; Kefaloyianni, E; Agullo-Pascual, E; Chkourko, H; Foster, M; Taskin, E; Reid, D A; Rothenberg, E; Delmar, M; Coetzee, W A
Ventricular KATP channels link intracellular energy metabolism to membrane excitability and contractility. We identified plakoglobin (PG) and plakophilin-2 (PKP2) as KATP channel associated proteins and investigated whether the association of KATP channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between KATP channels and PKP2 and PG in rat heart. Immunolocalization experiments demonstrated that KATP channel subunits are expressed at a higher density at the intercalated disk (ICD) in hearts, where they colocalized with PKP2 and PG. Super-resolution microscopy demonstrate that KATP channels are clustered within nanometer distances from junctional proteins. The local KATP channel density was larger at the cell end when compared to local currents recorded from the cell's center. The KATP channel unitary conductance, block by MgATP and activation by MgADP did not differ between these two locations. Whole-cell KATP channel current density was ~40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of KATP channels was absent in the PKP2 deficient mice, but the KATP channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of KATP channel distribution within a cardiac myocyte. The higher KATP channel density at the ICD implies a possible role at the intercellular junctions during cardiac ischemia
EMBASE:71151346
ISSN: 1530-6860
CID: 550862
Changes in Psp protein binding partners, localization and behaviour upon activation of the Yersinia enterocolitica phage shock protein response
Yamaguchi, Saori; Reid, Dylan A; Rothenberg, Eli; Darwin, Andrew J
PspA, -B and -C regulate the bacterial phage shock protein stress response by controlling the PspF transcription factor. Here, we have developed complementary approaches to study the behaviour of these proteins at their endogenous levels in Yersinia enterocolitica. First, we observed GFP-tagged versions with an approach that resolves individual protein complexes in live cells. This revealed that PspA, -B and -C share common behaviours, including a striking contrast before and after induction. In uninduced cells, PspA, -B and -C were highly mobile and widely distributed. However, induction reduced mobility and the proteins became more organized. Combining mCherry- and GFP-tagged proteins also revealed that PspA colocalizes with PspB and PspC into large stationary foci, often located close to the pole of induced cells. In addition, co-immunoprecipitation assays provided the first direct evidence supporting the model that PspA switches binding partners from PspF to PspBC upon induction. Together, these data suggest that PspA, -B and -C do not stably interact and are highly mobile before induction, perhaps sampling the status of the membrane and each other. However, an inducing signal promotes PspABC complex formation and their relocation to discrete parts of the membrane, which might then be important for mitigating envelope stress.
PMCID:3556206
PMID: 23290031
ISSN: 0950-382x
CID: 214012
Heterogeneity of ATP-sensitive K+ Channels in Cardiac Myocytes: ENRICHMENT AT THE INTERCALATED DISK
Hong, Miyoun; Bao, Li; Kefaloyianni, Eirini; Agullo-Pascual, Esperanza; Chkourko, Halina; Foster, Monique; Taskin, Eylem; Zhandre, Marine; Reid, Dylan A; Rothenberg, Eli; Delmar, Mario; Coetzee, William A
Ventricular ATP-sensitive potassium (K(ATP)) channels link intracellular energy metabolism to membrane excitability and contractility. Our recent proteomics experiments identified plakoglobin and plakophilin-2 (PKP2) as putative K(ATP) channel-associated proteins. We investigated whether the association of K(ATP) channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between K(ATP) channels and PKP2 and plakoglobin in rat heart. Immunolocalization experiments demonstrated that K(ATP) channel subunits (Kir6.2 and SUR2A) are expressed at a higher density at the intercalated disk in mouse and rat hearts, where they co-localized with PKP2 and plakoglobin. Super-resolution microscopy demonstrate that K(ATP) channels are clustered within nanometer distances from junctional proteins. The local K(ATP) channel density, recorded in excised inside-out patches, was larger at the cell end when compared with local currents recorded from the cell center. The K(ATP) channel unitary conductance, block by MgATP and activation by MgADP, did not differ between these two locations. Whole cell K(ATP) channel current density (activated by metabolic inhibition) was approximately 40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of K(ATP) channels was absent in the PKP2 deficient mice, but the K(ATP) channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of K(ATP) channel distribution within a cardiac myocyte. The higher K(ATP) channel density at the intercalated disk implies a possible role at the intercellular junctions during cardiac ischemia.
PMCID:3510824
PMID: 23066018
ISSN: 0021-9258
CID: 205642
Interaction of Bacteriophage l with Its E. coli Receptor, LamB
Chatterjee, Sujoy; Rothenberg, Eli
The initial step of viral infection is the binding of a virus onto the host cell surface. This first viral-host interaction would determine subsequent infection steps and the fate of the entire infection process. A basic understating of the underlining mechanism of initial virus-host binding is a prerequisite for establishing the nature of viral infection. Bacteriophage λ and its host Escherichia coli serve as an excellent paradigm for this purpose. λ phages bind to specific receptors, LamB, on the host cell surface during the infection process. The interaction of bacteriophage λ with the LamB receptor has been the topic of many studies, resulting in wealth of information on the structure, biochemical properties and molecular biology of this system. Recently, imaging studies using fluorescently labeled phages and its receptor unveil the role of spatiotemporal dynamics and divulge the importance of stochasticity from hidden variables in the infection outcomes. The scope of this article is to review the present state of research on the interaction of bacteriophage λ and its E. coli receptor, LamB.
PMCID:3509688
PMID: 23202520
ISSN: 1999-4915
CID: 197462
Remodeling of mechanical junctions and of microtubule-associated proteins accompany cardiac connexin43 lateralization
Chkourko, Halina S; Guerrero-Serna, Guadalupe; Lin, Xianming; Darwish, Nedal; Pohlmann, Joshua R; Cook, Keith E; Martens, Jeffrey R; Rothenberg, Eli; Musa, Hassan; Delmar, Mario
BACKGROUND: Desmosomes and adherens junctions provide mechanical continuity between cardiac cells, whereas gap junctions allow for cell-cell electrical/metabolic coupling. These structures reside at the cardiac intercalated disc (ID). Also at the ID is the voltage-gated sodium channel (VGSC) complex. Functional interactions between desmosomes, gap junctions, and VGSC have been demonstrated. Separate studies show, under various conditions, reduced presence of gap junctions at the ID and redistribution of connexin43 (Cx43) to plaques oriented parallel to fiber direction (gap junction "lateralization"). OBJECTIVE: To determine the mechanisms of Cx43 lateralization, and the fate of desmosomal and sodium channel molecules in the setting of Cx43 remodeling. METHODS: Adult sheep were subjected to right ventricular pressure overload (pulmonary hypertension). Tissue was analyzed by quantitative confocal microscopy and by transmission electron microscopy. Ionic currents were measured using conventional patch clamp. RESULT: Quantitative confocal microscopy demonstrated lateralization of immunoreactive junctional molecules. Desmosomes and gap junctions in lateral membranes were demonstrable by electron microscopy. Cx43/desmosomal remodeling was accompanied by lateralization of 2 microtubule-associated proteins relevant for Cx43 trafficking: EB1 and kinesin protein Kif5b. In contrast, molecules of the VGSC failed to reorganize in plaques discernable by confocal microscopy. Patch-clamp studies demonstrated change in amplitude and kinetics of sodium current and a small reduction in electrical coupling between cells. CONCLUSIONS: Cx43 lateralization is part of a complex remodeling that includes mechanical and gap junctions but may exclude components of the VGSC. We speculate that lateralization results from redirectionality of microtubule-mediated forward trafficking. Remodeling of junctional complexes may preserve electrical synchrony under conditions that disrupt ID integrity.
PMCID:3723688
PMID: 22406144
ISSN: 1547-5271
CID: 170416
Single-molecule-based super-resolution images in the presence of multiple fluorophores
Simonson, Paul D; Rothenberg, Eli; Selvin, Paul R
Several super-resolution techniques exist, yet most require multiple lasers, use either large or weakly emitting fluorophores, or involve chemical manipulation. Here we show a simple technique that exceeds the standard diffraction limit by 5-15x on fixed samples, yet allows the user to localize individual fluorophores from among groups of crowded fluorophores. It relies only on bright, organic fluorophores and a sensitive camera, both of which are commercially available. Super-resolution is achieved by subtracting sequential images to find the fluorophores that photobleach (temporarily or permanently), photoactivate, or bind to the structure of interest in transitioning from one frame to the next. These fluorophores can then be localized via Gaussian fitting with selective frame averaging to achieve accuracies much better than the diffraction limit. The signal-to-noise ratio decreases with the square root of the number of nearby fluorophores, producing average single-molecule localization errors that are typically <30 nm. Surprisingly, one can often extract signal when there are approximately 20 fluorophores surrounding the fluorophore of interest. Examples shown include microtubules (in vitro and in fixed cells) and chromosomal DNA
PMCID:3212641
PMID: 22003850
ISSN: 1530-6992
CID: 148873
Two-photon 3D FIONA of individual quantum dots in an aqueous environment
Zhang, Ruobing; Rothenberg, Eli; Fruhwirth, Gilbert; Simonson, Paul D; Ye, Fangfu; Golding, Ido; Ng, Tony; Lopes, Ward; Selvin, Paul R
We report the first two-photon (2P) microscopy of individual quantum dots (QDs) in an aqueous environment with both widefield and point-scan excitations at nanometer accuracy. Thiol-containing reductants suppress QD blinking and enable measurement of the 36 nm step size of individual Myosin V motors in vitro. We localize QDs with an accuracy of 2-3 nm in all three dimensions by using a 9 x 9 matrix excitation hologram and an array detector, which also increases the 3D scan imaging rate by 80-fold. With this 3D microscopy we validate the LamB receptor distribution on E. coli and the endocytosis of EGF-receptors in breast cancer cells
PMCID:3192306
PMID: 21882883
ISSN: 1530-6992
CID: 148872