Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:stewaz01

Total Results:

97


Increased p53 phosphorylation after microtubule disruption is mediated in a microtubule inhibitor- and cell-specific manner

Stewart, Z A; Tang, L J; Pietenpol, J A
p53 is present at low levels in unstressed cells. Numerous cellular insults, including DNA damage and microtubule disruption, elevate p53 protein levels. Phosphorylation of p53 is proposed to be important for p53 stabilization and activation after genotoxic stress; however, p53 phosphorylation after microtubule disruption has not been analysed. The goal of the current study was to determine if p53 phosphorylation increases after microtubule disruption, and if so, to identify specific p53 residues necessary for microtubule inhibitor-induced phosphorylation. Two dimensional gel analyses demonstrated that the number of p53 phospho-forms in cells increased after treatment with microtubule inhibitors (MTIs) and that the pattern of p53 phosphorylation was distinct from that observed after DNA damage. p53 phosphorylation also varied in a MTI-dependent manner, as Taxol and Vincristine induced more p53 phospho-forms than nocodazole. Further, MTI treatment increased phosphorylation of p53 on serine-15 in epithelial tumor cells. In contrast, serine-15 phosphorylation of p53 did not increase in MTI-treated primary cultures of human fibroblasts. Analysis of ectopically expressed p53 phospho-mutant proteins from Taxol- and nocodazole-treated cells indicated that multiple p53 amino terminal residues, including serine-15 and threonine-18, were required for Taxol-mediated phosphorylation of p53. Taken together, the results of this study demonstrate that distinct p53 phospho-forms are induced by MTI treatment as compared to DNA damage and that p53 phosphorylation is mediated in a MTI- and cell-specific manner. Oncogene (2001) 20, 113 - 124.
PMID: 11244509
ISSN: 0950-9232
CID: 4815622

Syk: a new player in the field of breast cancer

Stewart, Z A; Pietenpol, J A
Breast tumor development and progression are thought to occur through a complex, multistep process, including oncogene activation (eg HER2/neu) and mutation or loss of tumor suppressor genes (eg p53). Determining the function of genetic alterations in breast carcinoma tumorigenesis and metastasis has been the focus of intensive research efforts for several decades. One group of proteins that play a critical role in breast cancer cell signaling pathways are tyrosine kinases. Overexpression of the tyrosine kinase HER2/neu is observed in many human breast cancers and is positively correlated with enhanced tumorigenesis. Recently, another tyrosine kinase, Syk, has been implicated as an important inhibitor of breast cancer cell growth and metastasis. This recent finding was unexpected, since Syk function has been predominantly linked to hematopoietic cell signaling, and is discussed further in this commentary.
PMCID:138668
PMID: 11250739
ISSN: 1465-5411
CID: 4815482

Cell cycle checkpoints as therapeutic targets

Stewart, Z A; Pietenpol, J A
Most human breast tumors arise from multiple genetic changes which gradually transform differentiated and growth-limited cells into highly invasive cells that are unresponsive to growth controls. The genetic evolution of normal breast cells into cancer cells is largely determined by the fidelity of DNA replication, repair, and division. Cell cycle arrest in response to DNA damage is an important part of the mechanism used to maintain genomic integrity. The control mechanisms that restrain cell cycle transition after DNA damage are known as cell cycle checkpoints. This review will focus on cell cycle checkpoint signaling pathways commonly mutated in human breast tumors and suggest how different components of these checkpoint pathways offer the potential for chemotherapeutic intervention.
PMID: 10705922
ISSN: 1083-3021
CID: 4815612

Defective G1-S cell cycle checkpoint function sensitizes cells to microtubule inhibitor-induced apoptosis

Stewart, Z A; Mays, D; Pietenpol, J A
Defective cell cycle checkpoint function has been linked to enhanced sensitivity of tumor cells to certain genotoxic agents. To determine whether loss of the G1-S checkpoint function would sensitize tumor cells to microtubule inhibitor (MTI)-induced apoptosis, we examined the effect of the MTIs, Taxol and vincristine, on the cell cycle kinetics and survival of two isogenic cell lines, HCT116 p21+/+ and HCT116 p21-/-, which differ only at the p21 locus. p21-deficient cells displayed a dose-dependent, enhanced chemosensitivity to MTIs in both monolayer and soft agar assays as well as in mice xenograft tumors. The increased sensitivity of the p21-deficient cells to MTIs correlated with prolonged cyclin B1/Cdc2 activity and the occurrence of endoreduplication. Furthermore, sensitivity of p53-deficient cells to MTI-induced apoptosis was significantly reduced by induction of ectopic p21 protein. The results suggest that the status of G1-S checkpoint function in tumor cells may be an important determinant in the efficacy of MTIs used clinically.
PMID: 10447002
ISSN: 0008-5472
CID: 4815472

p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption

Stewart, Z A; Leach, S D; Pietenpol, J A
During a normal cell cycle, entry into S phase is dependent on completion of mitosis and subsequent activation of cyclin-dependent kinases (Cdks) in G1. These events are monitored by checkpoint pathways. Recent studies and data presented herein show that after treatment with microtubule inhibitors (MTIs), cells deficient in the Cdk inhibitor p21(Waf1/Cip1) enter S phase with a >/=4N DNA content, a process known as endoreduplication, which results in polyploidy. To determine how p21 prevents MTI-induced endoreduplication, the G1/S and G2/M checkpoint pathways were examined in two isogenic cell systems: HCT116 p21(+/+) and p21(-/-) cells and H1299 cells containing an inducible p21 expression vector (HIp21). Both HCT116 p21(-/-) cells and noninduced HIp21 cells endoreduplicated after MTI treatment. Analysis of G1-phase Cdk activities demonstrated that the induction of p21 inhibited endoreduplication through direct cyclin E/Cdk2 regulation. The kinetics of p21 inhibition of cyclin E/Cdk2 activity and binding to proliferating-cell nuclear antigen in HCT116 p21(+/+) cells paralleled the onset of endoreduplication in HCT116 p21(-/-) cells. In contrast, loss of p21 did not lead to deregulated cyclin D1-dependent kinase activities, nor did p21 directly regulate cyclin B1/Cdc2 activity. Furthermore, we show that MTI-induced endoreduplication in p53-deficient HIp21 cells was due to levels of p21 protein below a threshold required for negative regulation of cyclin E/Cdk2, since ectopic expression of p21 restored cyclin E/Cdk2 regulation and prevented endoreduplication. Based on these findings, we propose that p21 plays an integral role in the checkpoint pathways that restrain normal cells from entering S phase after aberrant mitotic exit due to defects in microtubule dynamics.
PMCID:83879
PMID: 9858545
ISSN: 0270-7306
CID: 4815582

Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and Taxol-induced growth arrest

Scatena, C D; Stewart, Z A; Mays, D; Tang, L J; Keefer, C J; Leach, S D; Pietenpol, J A
There is increasing evidence that prolonged mitotic arrest initiates apoptosis; however, little is known about the signaling pathways involved. Several studies have associated deregulated Cdc2 activity with apoptosis. Herein, we report that the anti-apoptotic protein, Bcl-2, undergoes cell cycle-dependent phosphorylation during mitosis when there is elevated Cdc2 activity. We found that paclitaxel (Taxol(R)) treatment of epithelial tumor cells induced a prolonged mitotic arrest, elevated levels of mitotic kinase activity, hyperphosphorylation of Bcl-2, and subsequent cell death. The Taxol-induced Bcl-2 phosphorylation was dose-dependent. Furthermore, phosphorylated Bcl-2 remained complexed with Bax in Taxol-treated cells undergoing apoptosis. Immunoprecipitation experiments revealed a Bcl-2-associated kinase capable of phosphorylating histone H1 in vitro. However, the kinase was likely not cyclin B1/Cdc2, since cyclin B1/Cdc2 was not detectable in Bcl-2 immunoprecipitates, nor was recombinant Bcl-2 phosphorylated in vitro by cyclin B1/Cdc2. The results of this study further define a link between mitotic kinase activation and the apoptotic machinery in the cell. However, the role, if any, of prolonged Bcl-2 phosphorylation in Taxol-mediated apoptosis awaits further definition of Bcl-2 mechanism of action. Taxol may increase cellular susceptibility to apoptosis by amplifying the normal downstream events associated with mitotic kinase activation.
PMID: 9804855
ISSN: 0021-9258
CID: 4815572

Apoptosis of late-stage erythroblasts in megaloblastic anemia: association with DNA damage and macrocyte production

Koury, M J; Horne, D W; Brown, Z A; Pietenpol, J A; Blount, B C; Ames, B N; Hard, R; Koury, S T
An in vitro model of folate-deficient erythropoiesis has been developed using proerythroblasts isolated from the spleens of Friend virus-infected mice fed an amino acid-based, folate-free diet. Control proerythroblasts were obtained from Friend virus-infected mice fed the same diet plus 2 mg folic acid/kg diet. Our previous studies showed that, after 20 to 32 hours of culture in folate-deficient medium with 4 U/mL of erythropoietin, the folate-deficient proerythroblasts underwent apoptosis, whereas control erythroblasts survived and differentiated into reticulocytes over a period of 48 hours. The addition of folic acid or thymidine to the folate-deficient medium prevented the apoptosis of the folate-deficient erythroblasts, thereby implicating decreased thymidylate synthesis as the main cause of apoptosis in the folate-deficient erythroblasts. In the study reported here, we examined intracellular folate levels, uracil misincorporation into DNA, p53 and p21 proteins, and reticulocyte formation in erythroblasts cultured in folate-deficient or control medium. In all experiments, the folate-deficient erythroblasts cultured in folate-deficient medium gave results that varied significantly from folate-deficient erythroblasts cultured in control medium or control erythroblasts cultured in either folate-deficient or control media. Folate-deficient erythroblasts cultured in folate-deficient medium had marked decreases in all coenzyme forms of folate that persisted throughout culture, increased uracil misincorporation into DNA, persistent accumulations of p53 and p21, and decreased reticulocyte production but increased size of individual reticulocytes. A model of folate-deficient erythropoiesis based on apoptosis of late stage erythroblasts is presented. This model provides explanations for the clinical findings in megaloblastic anemia.
PMID: 9192787
ISSN: 0006-4971
CID: 5230822