Searched for: in-biosketch:yes
person:sullir06
Infant bonding and attachment to the caregiver: insights from basic and clinical science
Sullivan, Regina; Perry, Rosemarie; Sloan, Aliza; Kleinhaus, Karine; Burtchen, Nina
Early life infant-caregiver attachment is a dynamic, bidirectional process that involving both the infant and caregiver. Infant attachment appears to have a dual function. First, it ensures the infant remains close to the caregiver in order to receive necessary care for survival. Second, the quality of attachment and its associated sensory stimuli organize the brain to define the infant's cognitive and emotional development. Here we present attachment within an historical view and highlight the importance of integrating human and animal research in understanding infant care
PMCID:3223373
PMID: 22107895
ISSN: 1557-9840
CID: 141715
Cortical processing of odor objects
Wilson, Donald A; Sullivan, Regina M
Natural odors, generally composed of many monomolecular components, are analyzed by peripheral receptors into component features and translated into spatiotemporal patterns of neural activity in the olfactory bulb. Here, we will discuss the role of the olfactory cortex in the recognition, separation and completion of those odor-evoked patterns, and how these processes contribute to odor perception. Recent findings regarding the neural architecture, physiology, and plasticity of the olfactory cortex, principally the piriform cortex, will be described in the context of how this paleocortical structure creates odor objects
PMCID:3223720
PMID: 22099455
ISSN: 1097-4199
CID: 141711
Adult depression-like behavior, amygdala and olfactory cortex functions are restored by odor previously paired with shock during infant's sensitive period attachment learning
Sevelinges Y; Mouly AM; Raineki C; Moriceau S; Forest C; Sullivan RM
Maltreatment from the caregiver induces vulnerability to later life psychopathologies, yet attraction and comfort is sometimes provided by cues associated with early life maltreatment. We used a rat model of early life maltreatment with odor-0.5mA shock conditioning to produce depressive-like behaviors and questioned whether stimuli associated with maltreatment would restore emotional neurobehavioral function to control levels. Pups received daily novel odor-0.5mA shock conditioning from postnatal day 8 to 12. This procedure produces a new maternal odor that controls pups' attachment behaviors. In adulthood, either with or without the infant odor, animals received a Forced Swim Test, Sucrose Preference Test or assessment of amygdala and olfactory system functioning using field potential signal evoked by olfactory bulb paired-pulse electrical stimulation. Following neonatal odor-shock pairings, but not unpaired controls, adults without the odor present showed increased depression-like behavior in the Forced Swim Test and Sucrose Preference Test and a deficit in paired-pulse inhibition in amygdala and piriform (olfactory) cortex. All effects were brought to control levels when the infant conditioned odor was presented during behavioral and neural tests. The ability of cues associated with early life maltreatment to normalize behavior and amygdala activity suggests these cues provide adaptive value in adulthood
PMCID:2964861
PMID: 21037982
ISSN: 1878-9293
CID: 133317
Rodent model of infant attachment learning and stress
Moriceau, Stephanie; Roth, Tania L; Sullivan, Regina M
Here we review the neurobiology of infant odor learning in rats, and discuss the unique role of the stress hormone corticosterone (CORT) in the learning necessary for the developing rat. During the first 9 postnatal (PN) days, infants readily learn odor preferences, while aversion and fear learning are attenuated. Such restricted learning may ensure that pups only approach their mother. This sensitive period of preference learning overlaps with the stress hyporesponsive period (SHRP, PN4-14) when pups have a reduced CORT response to most stressors. Neural underpinnings responsible for sensitive-period learning include increased activity within the olfactory bulb and piriform 'olfactory' cortex due to heightened release of norepinephrine from the locus coeruleus. After PN10 and with the decline of the SHRP, stress-induced CORT release permits amygdala activation and facilitates learned odor aversions and fear. Remarkably, odor preference and attenuated fear learning can be reestablished in PN10-15 pups if the mother is present, an effect due to her ability to suppress pups' CORT and amygdala activity. Together, these data indicate that functional changes in infant learning are modified by a unique interaction between the developing CORT system, the amygdala, and maternal presence, providing a learning system that becomes more flexible as pups mature. (c) 2010 Wiley Periodicals, Inc. Dev Psychobiol 52: 651-660, 2010
PMCID:4334117
PMID: 20730787
ISSN: 1098-2302
CID: 113944
The neurobiology of infant maternal odor learning
Raineki, C; Pickenhagen, A; Roth, T L; Babstock, D M; McLean, J H; Harley, C W; Lucion, A B; Sullivan, R M
Infant rats must learn to identify their mother's diet-dependent odor. Once learned, maternal odor controls pups' approach to the mother, their social behavior and nipple attachment. Here we present a review of the research from four different laboratories, which suggests that neural and behavioral responses to the natural maternal odor and neonatal learned odors are similar. Together, these data indicate that pups have a unique learning circuit relying on the olfactory bulb for neural plasticity and on the hyperfunctioning noradrenergic locus coeruleus flooding the olfactory bulb with norepinephrine to support the neural changes. Another important factor making this system unique is the inability of the amygdala to become incorporated into the infant learning circuit. Thus, infant rats appear to be primed in early life to learn odors that will evoke approach responses supporting attachment to the caregiver
PMCID:3602791
PMID: 20835686
ISSN: 1414-431x
CID: 134394
Functional emergence of the hippocampus in context fear learning in infant rats
Raineki, Charlis; Holman, Parker J; Debiec, Jacek; Bugg, Melissa; Beasley, Allyson; Sullivan, Regina M
The hippocampus is a part of the limbic system and is important for the formation of associative memories, such as acquiring information about the context (e.g., the place where an experience occurred) during emotional learning (e.g., fear conditioning). Here, we assess whether the hippocampus is responsible for pups' newly emerging context learning. In all experiments, postnatal day (PN) 21 and PN24 rat pups received 10 pairings of odor-0.5 mA shock or control unpaired odor-shock, odor only, or shock only. Some pups were used for context, cue or odor avoidance tests, while the remaining pups were used for c-Fos immunohistochemistry to assess hippocampal activity during acquisition. Our results show that cue and odor avoidance learning were similar at both ages, while contextual fear learning and learning-associated hippocampal (CA1, CA3, and dentate gyrus) activity (c-Fos) only occurred in PN24 paired pups. To assess a causal relationship between the hippocampus and context conditioning, we infused muscimol into the hippocampus, which blocked acquisition of context fear learning in the PN24 pups. Muscimol or vehicle infusions did not affect cue learning or aversion to the odor at PN21 or PN24. The results suggest that the newly emerging contextual learning exhibited by PN24 pups is supported by the hippocampus
PMCID:2891848
PMID: 19739248
ISSN: 1098-1063
CID: 138389
Defining age limits of the sensitive period for attachment learning in rat pups
Upton, Karen J; Sullivan, Regina M
Enhanced odor preference learning and attenuated fear learning characterizes rat pups' attachment learning Sensitive Period for learning the maternal odor. This period terminates at 10 days old (PN10) with increasing endogenous levels of the stress hormone, corticosterone. Increasing Sensitive Period pups' corticosterone prematurely terminates the Sensitive Period, while decreasing corticosterone in older pups delays Sensitive Period termination. Here we extend these findings and define the age range corticosterone alters learning and question whether corticosterone permanently terminates the Sensitive Period. Pups were odor-0.5 mA shock conditioned with either corticosterone increased (PN5-6; 4 mg/kg vs. saline) or decreased (PN15-16; naturally by maternal presence or corticosterone synthesis blocker, Metyrapone). Finally, PN7-8 pups were conditioned with corticosterone and reconditioned without corticosterone to assess whether the Sensitive Period was permanently terminated. Results indicate developmental limits for corticosterone regulation of pup learning are PN6 through PN15. Furthermore, inducing precocious corticosterone induced fear learning was not permanent, since reconditioning without corticosterone enabled odor preference learning. Results suggest pups are protected from learning aversions to maternal odor until approaching weaning
PMCID:3602827
PMID: 20583142
ISSN: 1098-2302
CID: 139563
Developing a Neurobehavioral Animal Model of Infant Attachment to an Abusive Caregiver
Raineki, Charlis; Moriceau, Stephanie; Sullivan, Regina M
BACKGROUND: Both abused and well cared for infants show attachment to their caregivers, although the quality of that attachment differs. Moreover, the infant's attachment to the abusive caregiver is associated with compromised mental health, especially under stress. In an attempt to better understand how abuse by the caregiver can compromise mental health, we explore the neural basis of attachment in both typical and abusive environments using infant rats, which form attachments to the mother through learning her odor. Here, we hypothesize that the neural circuitry for infant attachment differs based on the quality of the attachment, which can be uncovered during stressful situations. METHODS: We used infant rats to compare infant attachment social behaviors and supporting neurobiology using natural maternal odor, as well as two odor-learning attachment paradigms: odor-stroke (mimics typical attachment) and odor-.5 mA shock conditioning (mimics abusive attachment). Next, to uncover differences in behavior and brain, these pups were injected with systemic corticosterone. Finally, pups were reared with an abusive mother to determine ecological relevance. RESULTS: Our results suggest that the natural and learned attachment odors indistinguishably control social behavior in infancy (approach to the odor and interactions with the mother). However, with corticosterone injection, pups with an abusive attachment show disrupted infant social behavior with the mother and engagement of the amygdala. CONCLUSIONS: This animal model of attachment accommodates both abusive and typical attachment and suggests that pups' social behavior and underlying neural circuitry may provide clues to understanding attachment in children with various conditions of care
PMCID:3929962
PMID: 20163787
ISSN: 1873-2402
CID: 109077
Transitions in sensitive period attachment learning in infancy: the role of corticosterone
Sullivan, Regina M; Holman, Parker J
Survival of altricial infants, including humans and rats, depends on attachment to the caregiver - a process that requires infants to recognize, learn, and remember their attachment figure. The demands of a dynamic environment combined with a maturing organism require frequent neurobehavioral reorganization. This restructuring of behavior and its supporting neural circuitry can be viewed through the unique lens of attachment learning in rats in which preference learning is enhanced and aversion learning is attenuated. Behavioral restructuring is well adapted to securing the crucial infant-caregiver relationship regardless of the quality of care. With maturation and the end of the infant-caregiver attachment learning period, the complex interplay of neural structures, hormones, and social behavior coordinates the developing rat's eventual transition to life outside of the nest. Nevertheless, early-life environmental and physiological stressors can alter the resilient nature of this system, particularly with respect to the amygdala, and these changes may provide important clues to understanding the lasting effects of early stress
PMCID:2848912
PMID: 19931556
ISSN: 1873-7528
CID: 109079
Memory and plasticity in the olfactory system : from infancy to adulthood
Chapter by: Mouly, Anne-Marie; Sullivan, Regina
in: The neurobiology of olfaction by Menini, Anna [Eds]
Boca Raton, FL : CRC Press/Taylor & Francis, c2010
pp. ?-?
ISBN: 1420071998
CID: 5838