Searched for: in-biosketch:yes
person:ueberb01
Global phosphoproteomic analysis of PD-1 signaling reveals T cell subset specific PD-1 functions [Meeting Abstract]
Tocheva, Anna S.; Peled, Michael; Nayak, Shruti; Philips, Elliot A.; Ueberheide, Beatrix; Mor, Adam
ISI:000459977701216
ISSN: 0022-1767
CID: 3727652
Human Memory B Cells TargetingStaphylococcus aureusExotoxins Are Prevalent with Skin and Soft Tissue Infection
Pelzek, Adam J; Shopsin, Bo; Radke, Emily E; Tam, Kayan; Ueberheide, Beatrix M; Fenyo, David; Brown, Stuart M; Li, Qianhao; Rubin, Ada; Fulmer, Yi; Chiang, William K; Hernandez, David N; El Bannoudi, Hanane; Sause, William E; Sommerfield, Alexis; Thomsen, Isaac P; Miller, Andy O; Torres, Victor J; Silverman, Gregg J
Staphylococcus aureus
PMCID:5850327
PMID: 29535203
ISSN: 2150-7511
CID: 2992702
Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence
Harper, Lamia; Balasubramanian, Divya; Ohneck, Elizabeth A; Sause, William E; Chapman, Jessica; Mejia-Sosa, Bryan; Lhakhang, Tenzin; Heguy, Adriana; Tsirigos, Aristotelis; Ueberheide, Beatrix; Boyd, Jeffrey M; Lun, Desmond S; Torres, Victor J
Staphylococcus aureus is a versatile bacterial pathogen that can cause significant disease burden and mortality. Like other pathogens, S. aureus must adapt to its environment to produce virulence factors to survive the immune responses evoked by infection. Despite the importance of environmental signals for S. aureus pathogenicity, only a limited number of these signals have been investigated in detail for their ability to modulate virulence. Here we show that pyruvate, a central metabolite, causes alterations in the overall metabolic flux of S. aureus and enhances its pathogenicity. We demonstrate that pyruvate induces the production of virulence factors such as the pore-forming leucocidins and that this induction results in increased virulence of community-acquired methicillin-resistant S. aureus (CA-MRSA) clone USA300. Specifically, we show that an efficient "pyruvate response" requires the activation of S. aureus master regulators AgrAC and SaeRS as well as the ArlRS two-component system. Altogether, our report further establishes a strong relationship between metabolism and virulence and identifies pyruvate as a novel regulatory signal for the coordination of the S. aureus virulon through intricate regulatory networks.IMPORTANCE Delineation of the influence of host-derived small molecules on the makeup of human pathogens is a growing field in understanding host-pathogen interactions. S. aureus is a prominent pathogen that colonizes up to one-third of the human population and can cause serious infections that result in mortality in ~15% of cases. Here, we show that pyruvate, a key nutrient and central metabolite, causes global changes to the metabolic flux of S. aureus and activates regulatory networks that allow significant increases in the production of leucocidins. These and other virulence factors are critical for S. aureus to infect diverse host niches, initiate infections, and effectively subvert host immune responses. Understanding how environmental signals, particularly ones that are essential to and prominent in the human host, affect virulence will allow us to better understand pathogenicity and consider more-targeted approaches to tackling the current S. aureus epidemic.
PMCID:5784258
PMID: 29362239
ISSN: 2150-7511
CID: 2927812
Quantitative and Structural Assessment of Histone Methyllysine Analogue Engagement by Cognate Binding Proteins Reveals Affinity Decrements Relative to Those of Native Counterparts
Chen, Zhonglei; Notti, Ryan Q; Ueberheide, Beatrix; Ruthenburg, Alexander J
Methyllysine analogues (MLAs), furnished by aminoethylation of engineered cysteine residues, are widely used surrogates of histone methyllysine and are considered to be effective proxies for studying these epigenetic marks in vitro. Here we report the first structure of a trimethyllysine MLA histone in complex with a protein binding partner, quantify the thermodynamic distinctions between MLAs and their native methyllysine counterparts, and demonstrate that these differences can compromise qualitative interpretations of binding at the nucleosome level. Quantitative measurements with two methyllysine binding protein modules reveal substantial affinity losses for the MLA peptides versus the corresponding native methyllysine species in both cases, although the thermodynamic underpinnings are distinct. MLA and methyllysine adopt distinct conformational geometries when in complex with the BPTF PHD finger, a well-established H3K4me3 binding partner. In this case, an ∼13-fold Kddifference at the peptide level translates to nucleosomal affinities for MLA analogues that fall outside of the detectable range in a pull-down format, whereas the methyllysine species installed by native chemical ligation demonstrates robust binding. Thus, despite their facile production and commercial availability, there is a significant caveat of potentially altered binding affinity when MLAs are used in place of native methyllysine residues.
PMCID:5780203
PMID: 29111671
ISSN: 1520-4995
CID: 2953882
Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor
Peled, Michael; Tocheva, Anna S; Sandigursky, Sabina; Nayak, Shruti; Philips, Elliot A; Nichols, Kim E; Strazza, Marianne; Azoulay-Alfaguter, Inbar; Askenazi, Manor; Neel, Benjamin G; Pelzek, Adam J; Ueberheide, Beatrix; Mor, Adam
Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.
PMCID:5776966
PMID: 29282323
ISSN: 1091-6490
CID: 2895842
LINE-1 protein localization and functional dynamics during the cell cycle
Mita, Paolo; Wudzinska, Aleksandra; Sun, Xiaoji; Andrade, Joshua; Nayak, Shruti; Kahler, David J; Badri, Sana; LaCava, John; Ueberheide, Beatrix; Yun, Chi Y; Fenyo, David; Boeke, Jef D
LINE-1/L1 retrotransposon sequences comprise 17% of the human genome. Among the many classes of mobile genetic elements, L1 is the only autonomous retrotransposon that still drives human genomic plasticity today. Through its co-evolution with the human genome, L1 has intertwined itself with host cell biology. However, a clear understanding of L1's lifecycle and the processes involved in restricting its insertion and intragenomic spread remains elusive. Here we identify modes of L1 proteins' entrance into the nucleus, a necessary step for L1 proliferation. Using functional, biochemical, and imaging approaches, we also show a clear cell cycle bias for L1 retrotransposition that peaks during the S phase. Our observations provide a basis for novel interpretations about the nature of nuclear and cytoplasmic L1 ribonucleoproteins (RNPs) and the potential role of DNA replication in L1 retrotransposition.
PMCID:5821460
PMID: 29309036
ISSN: 2050-084x
CID: 2906582
Isolation of Amyloid Plaques and Neurofibrillary Tangles from Archived Alzheimer's Disease Tissue Using Laser-Capture Microdissection for Downstream Proteomics
Drummond, Eleanor; Nayak, Shruti; Pires, Geoffrey; Ueberheide, Beatrix; Wisniewski, Thomas
Here, we describe a new method that allows localized proteomics of amyloid plaques and neurofibrillary tangles (NFTs), which are the two pathological hallmarks of Alzheimer's disease (AD). Amyloid plaques and NFTs are visualized using immunohistochemistry and microdissected from archived, formalin-fixed paraffin-embedded (FFPE) human tissue samples using laser-capture microdissection. The majority of human tissue specimens are FFPE; hence the use of this type of tissue is a particular advantage of this technique. Microdissected tissue samples are solubilized with formic acid and deparaffinized, reduced, alkylated, proteolytically digested, and desalted. The resulting protein content of plaques and NFTs is determined using label-free quantitative LC-MS. This results in the unbiased and simultaneous quantification of ~900 proteins in plaques and ~500 proteins in NFTs. This approach permits downstream pathway and network analysis, hence providing a comprehensive overview of pathological protein accumulation found in neuropathological features in AD.
PMCID:5811767
PMID: 29344869
ISSN: 1940-6029
CID: 2915422
Purification and enzymatic characterization of a novel metalloprotease from Lachesis muta rhombeata snake venom
Cordeiro, Francielle Almeida; Coutinho, Bárbara Marques; Wiezel, Gisele Adriano; Bordon, Karla de Castro Figueiredo; Bregge-Silva, Cristiane; Rosa-Garzon, Nathalia Gonsales; Cabral, Hamilton; Ueberheide, Beatrix; Arantes, Eliane Candiani
Background/UNASSIGNED:. Metalloproteases comprise a large group of zinc-dependent proteases that cleave basement membrane components such as fibronectin, laminin and collagen type IV. These enzymes are responsible for local and systemic changes, including haemorrhage, myonecrosis and inflammation. This study aimed the isolation and enzymatic characterization of the first metalloprotease (Lmr-MP) from Lmr venom (LmrV). Methods and results/UNASSIGNED:showed a dose dependent inhibition of the enzyme. Lmr-MP activity was also evaluated upon chromogenic substrates for plasma kallikrein (S-2302), plasmin and streptokinase-activated plasminogen (S-2251) and Factor Xa (S-2222) showing the highest activity on S-2302. The activity in different solutions (5 mM or 50 mM ammonium bicarbonate, pH 7.8; 0.1% trifluoroacetic acid + 50% acetonitrile; phosphate buffer saline, pH 7.4; 50 mM sodium acetate, pH 4.0 or ammonium acetate pH 4.5) was also evaluated and the results showed that its activity was abolished at acidic pHs. Its molecular mass (22,858 Da) was determined by MALDI-TOF and about 90% of its primary structure was verified by high-resolution mass spectrometry using HCD and ETD fragmentations and database search against the sequence of closely related species. It is a novel enzyme which shared high identity with other snake venom metalloproteases (svMPs) belonging to the P-I group. Conclusion/UNASSIGNED:envenoming, as well as to open new perspectives for its use as therapeutic tools.
PMID: 30498508
ISSN: 1678-9199
CID: 3520102
Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation
Bhardwaj, Amit; Yang, Yanling; Ueberheide, Beatrix; Smith, Susan
Tankyrase 1 and 2 are poly(ADP-ribose) polymerases that function in pathways critical to cancer cell growth. Tankyrase-mediated PARylation marks protein targets for proteasomal degradation. Here, we generate human knockout cell lines to examine cell function and interrogate the proteome. We show that either tankyrase 1 or 2 is sufficient to maintain telomere length, but both are required to resolve telomere cohesion and maintain mitotic spindle integrity. Quantitative analysis of the proteome of tankyrase double knockout cells using isobaric tandem mass tags reveals targets of degradation, including antagonists of the Wnt/β-catenin signaling pathway (NKD1, NKD2, and HectD1) and three (Notch 1, 2, and 3) of the four Notch receptors. We show that tankyrases are required for Notch2 to exit the plasma membrane and enter the nucleus to activate transcription. Considering that Notch signaling is commonly activated in cancer, tankyrase inhibitors may have therapeutic potential in targeting this pathway.
PMCID:5738441
PMID: 29263426
ISSN: 2041-1723
CID: 2892172
Degradation of PHLPP2 by KCTD17, via a Glucagon-dependent Pathway, Promotes Hepatic Steatosis
Kim, KyeongJin; Ryu, Dongryeol; Dongiovanni, Paola; Ozcan, Lale; Nayak, Shruti; Ueberheide, Beatrix; Valenti, Luca; Auwerx, Johan; Pajvani, Utpal B
BACKGROUND & AIMS: Obesity-induced non-alcoholic fatty liver disease (NAFLD) develops, in part, via excess insulin-stimulated hepatic de novo lipogenesis, which increases, paradoxically, in patients with obesity-induced insulin resistance. Pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) terminates insulin signaling by dephosphorylating Akt; levels of PHLPP2 are reduced in livers from obese mice. We investigated whether loss of hepatic PHLPP2 is sufficient to induce fatty liver in mice, mechanisms of PHLPP2 degradation in fatty liver, and expression of genes that regulate PHLPP2 in livers of patients with NAFLD. METHODS: C57BL/6J mice (controls), obese db/db mice and mice with liver-specific deletion of PHLPP2 (L-PHLPP2) fed either normal chow or high-fat diet (HFD) were analyzed for metabolic phenotypes including glucose tolerance and hepatic steatosis. PHLPP2-deficient primary hepatocytes or CRISPR/Cas9-mediated PHLPP2-knockout hepatoma cells were analyzed for insulin signaling and gene expression. We performed mass spectrometry analyses of livers tissues from C57BL/6J mice transduced with Ad-HA-FLAG-PHLPP2 to identify post-translational modifications to PHLPP2 and proteins that interact with PHLPP2. We measured levels of mRNAs by quantitative reverse transcription PCR in liver biopsies from patients with varying degrees of hepatic steatosis. RESULTS: PHLPP2-knockout hepatoma cells and hepatocytes from L-PHLPP2 mice showed normal initiation of insulin signaling, but prolonged insulin action. Chow-fed L-PHLPP2 mice had normal glucose tolerance but hepatic steatosis. In HFD-fed C57BL/6J or db/db obese mice, endogenous PHLPP2 was degraded by glucagon and PKA-dependent phosphorylation of PHLPP2 (at Ser1119 and Ser1210), which led to PHLPP2 binding to potassium channel tetramerization domain containing 17 (KCTD17), a substrate-adaptor for Cul3-RING ubiquitin ligases. Levels of KCTD17 mRNA were increased in livers of HFD-fed C57BL/6J or db/db obese mice and in liver biopsies patients with NAFLD, compared with liver tissues from healthy control mice or patients without steatosis. Knockdown of KCTD17 with small hairpin RNA in primary hepatocytes increased PHLPP2 protein but not Phlpp2 mRNA, indicating that KCTD17 mediates PHLPP2 degradation. KCTD17 knockdown in obese mice prevented PHLPP2 degradation and decreased expression of lipogenic genes. CONCLUSIONS: In mouse models of obesity, we found that PHLPP2 degradation induced lipogenesis without affecting gluconeogenesis. KCTD17, which is upregulated in liver tissues of obese mice and patients with NAFLD, binds to phosphorylated PHLPP2 to target it for ubiquitin-mediated degradation; this increases expression of genes that regulate lipogenesis to promote hepatic steatosis. Inhibitors of this pathway might be developed for treatment of patients with NAFLD.
PMCID:5705280
PMID: 28859855
ISSN: 1528-0012
CID: 2679622