Searched for: in-biosketch:yes
person:johnsp23
Artificial Intelligence in Prostate MRI: Addressing Current Limitations Through Emerging Technologies
Johnson, Patricia M; Umapathy, Lavanya; Gigax, Bradley; Rossi, Juan Kochen; Tong, Angela; Bruno, Mary; Sodickson, Daniel K; Nayan, Madhur; Chandarana, Hersh
Prostate MRI has transformed lesion detection and risk stratification in prostate cancer, but its impact is constrained by the high cost of the exam, variability in interpretation, and limited scalability. False negatives, false positives, and moderate inter-reader agreement undermine reliability, while long acquisition times restrict throughput. Artificial intelligence (AI) offers potential solutions to address many of the limitations of prostate MRI in the clinical management pathway. Machine learning-based triage can refine patient selection to optimize resources. Deep learning reconstruction enables accelerated acquisition while preserving diagnostic quality, with multiple FDA-cleared products now in clinical use. Ongoing development of automated quality assessment and artifact correction aims to improve reliability by reducing nondiagnostic exams. In image interpretation, AI models for lesion detection and clinically significant prostate cancer prediction achieve performance comparable to radiologists, and the PI-CAI international reader study has provided the strongest evidence to date of non-inferiority at scale. More recent work extends MRI-derived features into prognostic modeling of recurrence, metastasis, and functional outcomes. This review synthesizes progress across five domains-triage, accelerated acquisition and reconstruction, image quality assurance, diagnosis, and prognosis-highlighting the level of evidence, validation status, and barriers to adoption. While acquisition and reconstruction are furthest along, with FDA-cleared tools and prospective evaluations, triage, quality control, and prognosis remain earlier in development. Ensuring equitable performance across populations, incorporating uncertainty estimation, and conducting prospective workflow trials will be essential to move from promising prototypes to routine practice. Ultimately, AI could accelerate the adoption of prostate MRI toward a scalable platform for earlier detection and population-level prostate cancer management. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: 3.
PMID: 41348934
ISSN: 1522-2586
CID: 5975352
Real-world diagnostic performance of knee MRI protocols accelerated using simultaneous multi-slice acquisition and deep learning reconstruction
Johnson, Patricia M; Dogra, Siddhant; Westerhoff, Malte; Fritz, Jan; Lin, Dana J; Recht, Michael P
OBJECTIVE:To assess whether accelerated knee MRI protocols using simultaneous multi-slice (SMS) and deep learning reconstruction (DLR) are non-inferior to a conventional parallel imaging protocol for detecting internal derangement injuries. METHODS:This retrospective cohort study included 1055 patients who underwent knee MRI followed by arthroscopy within 180 days. Patients were scanned using either a conventional protocol (n = 226), an accelerated SMS protocol (n = 406), or a SMS with DLR protocol (n = 423). Each group included consecutive exams. Imaging was performed on 3 T MRI using five standardized two-dimensional turbo spin echo sequences. Radiology interpretations were compared with arthroscopy (reference standard) for anterior cruciate ligament (ACL), medial meniscus (MM), and lateral meniscus (LM) tears. Sensitivity and specificity were calculated with 95% confidence intervals using non-parametric bootstrapping. Non-inferiority was concluded if the upper bound of the 95% confidence interval for the difference in sensitivity and specificity was ≤ 0.05. RESULTS:Among all patients, 666 had MM tears, 417 had LM tears, and 220 had ACL tears. Sensitivity for ACL tears was higher with accelerated protocols (0.96 and 0.98) than the conventional (0.85), with non-inferiority confirmed. Specificity was ≥ 0.98 across all protocols. MM sensitivity (0.94-0.95) met non-inferiority criteria. MM specificity (0.88-0.91) and LM sensitivity (0.63-0.68) were not statistically different across protocols but did not meet the non-inferiority margin. LM specificity (0.94) met non-inferiority criteria. CONCLUSION/CONCLUSIONS:Accelerated MRI protocols using SMS and DLR demonstrated comparable diagnostic performance to the reference protocol. Although not all metrics met the strict non-inferiority margin, none showed statistically significant reductions in sensitivity or specificity. These findings support the clinical adoption of accelerated protocols for faster, high-throughput knee imaging.
PMID: 41109866
ISSN: 1432-2161
CID: 5955482
Prostate Cancer Risk Stratification and Scan Tailoring Using Deep Learning on Abbreviated Prostate MRI
Johnson, Patricia M; Dutt, Tarun; Ginocchio, Luke A; Saimbhi, Amanpreet Singh; Umapathy, Lavanya; Block, Kai Tobias; Sodickson, Daniel K; Chopra, Sumit; Tong, Angela; Chandarana, Hersh
BACKGROUND:MRI plays a critical role in prostate cancer (PCa) detection and management. Bi-parametric MRI (bpMRI) offers a faster, contrast-free alternative to multi-parametric MRI (mpMRI). Routine use of mpMRI for all patients may not be necessary, and a tailored imaging approach (bpMRI or mpMRI) based on individual risk might optimize resource utilization. PURPOSE/OBJECTIVE:To develop and evaluate a deep learning (DL) model for classifying clinically significant PCa (csPCa) using bpMRI and to assess its potential for optimizing MRI protocol selection by recommending the additional sequences of mpMRI only when beneficial. STUDY TYPE/METHODS:Retrospective and prospective. POPULATION/METHODS:The DL model was trained and validated on 26,129 prostate MRI studies. A retrospective cohort of 151 patients (mean age 65 ± 8) with ground-truth verification from biopsy, prostatectomy, or long-term follow-up, alongside a prospective cohort of 142 treatment-naïve patients (mean age 65 ± 9) undergoing bpMRI, was evaluated. FIELD STRENGTH/SEQUENCE/UNASSIGNED:3 T, Turbo-spin echo T2-weighted imaging (T2WI) and single shot EPI diffusion-weighted imaging (DWI). ASSESSMENT/RESULTS:The DL model, based on a 3D ResNet-50 architecture, classified csPCa using PI-RADS ≥ 3 and Gleason ≥ 7 as outcome measures. The model was evaluated on a prospective cohort labeled by consensus of three radiologists and a retrospective cohort with ground truth verification based on biopsy or long-term follow-up. Real-time inference was tested on an automated MRI workflow, providing classification results directly at the scanner. STATISTICAL TESTS/METHODS:AUROC with 95% confidence intervals (CI) was used to evaluate model performance. RESULTS:In the prospective cohort, the model achieved an AUC of 0.83 (95% CI: 0.77-0.89) for PI-RADS ≥ 3 classification, with 93% sensitivity and 54% specificity. In the retrospective cohort, the model achieved an AUC of 0.86 (95% CI: 0.80-0.91) for Gleason ≥ 7 classification, with 93% sensitivity and 62% specificity. Real-time implementation demonstrated a processing latency of 14-16 s for protocol recommendations. DATA CONCLUSION/CONCLUSIONS:The proposed DL model identifies csPCa using bpMRI and integrates it into clinical workflows. EVIDENCE LEVEL/METHODS:1. TECHNICAL EFFICACY/UNASSIGNED:Stage 2.
PMID: 40259798
ISSN: 1522-2586
CID: 5830062
External evaluation of an open-source deep learning model for prostate cancer detection on bi-parametric MRI
Johnson, Patricia M; Tong, Angela; Ginocchio, Luke; Del Hoyo, Juan Lloret; Smereka, Paul; Harmon, Stephanie A; Turkbey, Baris; Chandarana, Hersh
OBJECTIVES/OBJECTIVE:This study aims to evaluate the diagnostic accuracy of an open-source deep learning (DL) model for detecting clinically significant prostate cancer (csPCa) in biparametric MRI (bpMRI). It also aims to outline the necessary components of the model that facilitate effective sharing and external evaluation of PCa detection models. MATERIALS AND METHODS/METHODS:This retrospective diagnostic accuracy study evaluated a publicly available DL model trained to detect PCa on bpMRI. External validation was performed on bpMRI exams from 151 biologically male patients (mean age, 65 ± 8 years). The model's performance was evaluated using patient-level classification of PCa with both radiologist interpretation and histopathology serving as the ground truth. The model processed bpMRI inputs to generate lesion probability maps. Performance was assessed using the area under the receiver operating characteristic curve (AUC) for PI-RADS ≥ 3, PI-RADS ≥ 4, and csPCa (defined as Gleason ≥ 7) at an exam level. RESULTS:The model achieved AUCs of 0.86 (95% CI: 0.80-0.92) and 0.91 (95% CI: 0.85-0.96) for predicting PI-RADS ≥ 3 and ≥ 4 exams, respectively, and 0.78 (95% CI: 0.71-0.86) for csPCa. Sensitivity and specificity for csPCa were 0.87 and 0.53, respectively. Fleiss' kappa for inter-reader agreement was 0.51. CONCLUSION/CONCLUSIONS:The open-source DL model offers high sensitivity to clinically significant prostate cancer. The study underscores the importance of sharing model code and weights to enable effective external validation and further research. KEY POINTS/CONCLUSIONS:Question Inter-reader variability hinders the consistent and accurate detection of clinically significant prostate cancer in MRI. Findings An open-source deep learning model demonstrated reproducible diagnostic accuracy, achieving AUCs of 0.86 for PI-RADS ≥ 3 and 0.78 for CsPCa lesions. Clinical relevance The model's high sensitivity for MRI-positive lesions (PI-RADS ≥ 3) may provide support for radiologists. Its open-source deployment facilitates further development and evaluation across diverse clinical settings, maximizing its potential utility.
PMID: 40753327
ISSN: 1432-1084
CID: 5903962
Morphological Brain Analysis Using Ultra Low-Field MRI
Hsu, Peter; Marchetto, Elisa; Sodickson, Daniel K; Johnson, Patricia M; Veraart, Jelle
Ultra low-field (ULF) MRI is an accessible neuroimaging modality that can bridge healthcare disparities and advance population-level brain health research. However, the inherently low signal-to-noise ratio of ULF-MRI often necessitates reductions in spatial resolution and, combined with the field-dependency of MRI contrast, challenges the accurate extraction of clinically relevant brain morphology. We evaluate the current state of ULF-MRI brain volumetry utilizing techniques for enhancing spatial resolution and leveraging recent advancements in brain segmentation. This is based on the agreement between ULF and corresponding high-field (HF) MRI brain volumes, and test-retest repeatability for multiple ULF scans. In this study, we find that accurate brain volumes can be measured from ULF-MRIs when combining orthogonal imaging directions for T2-weighted images to form a higher resolution image volume. We also demonstrate that not all orthogonal imaging directions contribute equally to volumetric accuracy and provide a recommended scan protocol given the constraints of the current technology.
PMCID:12207323
PMID: 40586128
ISSN: 1097-0193
CID: 5887542
Leveraging Representation Learning for Bi-parametric Prostate MRI to Disambiguate PI-RADS 3 and Improve Biopsy Decision Strategies
Umapathy, Lavanya; Johnson, Patricia M; Dutt, Tarun; Tong, Angela; Chopra, Sumit; Sodickson, Daniel K; Chandarana, Hersh
OBJECTIVES/OBJECTIVE:Despite its high negative predictive value (NPV) for clinically significant prostate cancer (csPCa), MRI suffers from a substantial number of false positives, especially for intermediate-risk cases. In this work, we determine whether a deep learning model trained with PI-RADS-guided representation learning can disambiguate the PI-RADS 3 classification, detect csPCa from bi-parametric prostate MR images, and avoid unnecessary benign biopsies. MATERIALS AND METHODS/METHODS:This study included 28,263 MR examinations and radiology reports from 21,938 men imaged for known or suspected prostate cancer between 2015 and 2023 at our institution (21 imaging locations with 34 readers), with 6352 subsequent biopsies. We trained a deep learning model, a representation learner (RL), to learn how radiologists interpret conventionally acquired T2-weighted and diffusion-weighted MR images, using exams in which the radiologists are confident in their risk assessments (PI-RADS 1 and 2 for the absence of csPCa vs. PI-RADS 4 and 5 for the presence of csPCa, n=21,465). We then trained biopsy-decision models to detect csPCa (Gleason score ≥7) using these learned image representations, and compared them to the performance of radiologists, and of models trained on other clinical variables (age, prostate volume, PSA, and PSA density) for treatment-naïve test cohorts consisting of only PI-RADS 3 (n=253, csPCa=103) and all PI-RADS (n=531, csPCa=300) cases. RESULTS:On the 2 test cohorts (PI-RADS-3-only, all-PI-RADS), RL-based biopsy-decision models consistently yielded higher AUCs in detecting csPCa (AUC=0.73 [0.66, 0.79], 0.88 [0.85, 0.91]) compared with radiologists (equivocal, AUC=0.79 [0.75, 0.83]) and the clinical model (AUCs=0.69 [0.62, 0.75], 0.78 [0.74, 0.82]). In the PIRADS-3-only cohort, all of whom would be biopsied using our institution's standard of care, the RL decision model avoided 41% (62/150) of benign biopsies compared with the clinical model (26%, P<0.001), and improved biopsy yield by 10% compared with the PI-RADS ≥3 decision strategy (0.50 vs. 0.40). Furthermore, on the all-PI-RADS cohort, RL decision model avoided 27% of additional benign biopsies (138/231) compared to radiologists (33%, P<0.001) with comparable sensitivity (93% vs. 92%), higher NPV (0.87 vs. 0.77), and biopsy yield (0.75 vs. 0.64). The combination of clinical and RL decision models further avoided benign biopsies (46% in PI-RADS-3-only and 62% in all-PI-RADS) while improving NPV (0.82, 0.88) and biopsy yields (0.52, 0.76) across the 2 test cohorts. CONCLUSIONS:Our PI-RADS-guided deep learning RL model learns summary representations from bi-parametric prostate MR images that can provide additional information to disambiguate intermediate-risk PI-RADS 3 assessments. The resulting RL-based biopsy decision models also outperformed radiologists in avoiding benign biopsies while maintaining comparable sensitivity to csPCa for the all-PI-RADS cohort. Such AI models can easily be integrated into clinical practice to supplement radiologists' reads in general and improve biopsy yield for any equivocal decisions.
PMID: 40586610
ISSN: 1536-0210
CID: 5887552
FastMRI Breast: A Publicly Available Radial k-Space Dataset of Breast Dynamic Contrast-enhanced MRI
Solomon, Eddy; Johnson, Patricia M; Tan, Zhengguo; Tibrewala, Radhika; Lui, Yvonne W; Knoll, Florian; Moy, Linda; Kim, Sungheon Gene; Heacock, Laura
The fastMRI breast dataset is the first large-scale dataset of radial k-space and Digital Imaging and Communications in Medicine data for breast dynamic contrast-enhanced MRI with case-level labels, and its public availability aims to advance fast and quantitative machine learning research.
PMCID:11791504
PMID: 39772976
ISSN: 2638-6100
CID: 5805022
Advancing Equitable AI in Radiology through Contrastive Learning [Comment]
Johnson, Patricia M
PMID: 39320236
ISSN: 2638-6100
CID: 5714072
AI-powered Diagnostics: Transforming Prostate Cancer Diagnosis with MRI [Editorial]
Johnson, Patricia M; Chandarana, Hersh
PMID: 39105644
ISSN: 1527-1315
CID: 5696762
Accelerated MRI reconstructions via variational network and feature domain learning
Giannakopoulos, Ilias I; Muckley, Matthew J; Kim, Jesi; Breen, Matthew; Johnson, Patricia M; Lui, Yvonne W; Lattanzi, Riccardo
We introduce three architecture modifications to enhance the performance of the end-to-end (E2E) variational network (VarNet) for undersampled MRI reconstructions. We first implemented the Feature VarNet, which propagates information throughout the cascades of the network in an N-channel feature-space instead of a 2-channel feature-space. Then, we add an attention layer that utilizes the spatial locations of Cartesian undersampling artifacts to further improve performance. Lastly, we combined the Feature and E2E VarNets into the Feature-Image (FI) VarNet, to facilitate cross-domain learning and boost accuracy. Reconstructions were evaluated on the fastMRI dataset using standard metrics and clinical scoring by three neuroradiologists. Feature and FI VarNets outperformed the E2E VarNet for 4
PMCID:11094153
PMID: 38744904
ISSN: 2045-2322
CID: 5656142