Searched for: in-biosketch:yes
person:liangf01
Exercise-induced dysregulation of the adrenergic response in a mouse model of PKP2-arrhythmogenic cardiomyopathy
van Opbergen, Chantal Jm; Gutierrez, Lilian K; Bertoli, Giorgia; Zhang, Mingliang; Boyce, Sarah; Deng, Yan; Cammer, Michael; Liang, Feng-Xia; Delmar, Mario
BACKGROUND:Plakophilin-2 (PKP2) is a component of the desmosome. Pathogenic variants can lead to arrhythmogenic cardiomyopathy (PKP2-ACM). In PKP2-ACM patients, exercise and catecholamine surges negatively impact arrhythmia incidence and severity. OBJECTIVE:To characterize remodeling of the sympathetic input and adrenergic response in hearts of PKP2-deficient mice (PKP2cKO) subjected to endurance exercise. METHODS:transient dynamics. Separately, we evaluated distribution of sympathetic terminals in PKP2cKO trained hearts vs controls. RESULTS:Exercise led to increased abundance of sarcolemma β1-ARs in control, and decreased abundance in PKP2cKO-myocytes. OCT3 knockdown drastically reduced the response of trained PKP2cKO-myocytes to norepinephrine but not isoproterenol, indicating preserved response to native catecholamines by intracellular (dyad-associated) receptors in the setting of a reduced sarcolemma pool. In tissue, we observed reduced abundance of sympathetic terminals, and heterogeneous distribution across the myocardium. CONCLUSION/CONCLUSIONS:Endurance exercise in PKP2-deficient myocytes leads to reduced pool of functional β1-ARs in the sarcolemma and yet availability of intracellular receptors, which can activate selected (and heterogeneous) routes of intracellular signaling cascades. We speculate that remodeling of nerve terminals affects sympathetic input distribution and hence, regional modulation of excitability and conduction. These changes can facilitate cell-generated triggered activity and heterogeneity of the underlying substrate, setting the stage for life-threatening arrhythmias.
PMID: 40383179
ISSN: 1556-3871
CID: 5852682
Chinese American Pain Experience Project (CAPE): Perceptions, Expectations, and Attitudes on Pain Management among Chinese American Postoperative Patients
Pan, Janet; Wong, Jazmine; Liang, Alice; Chong, Stella K; Chen, Xiaoshan; Aye, Myint; Rosenberg, Andrew; Cuff, Germaine; Kwon, Simona C
INTRODUCTION/BACKGROUND:Chinese Americans are one of the fastest growing racial and ethnic groups and represent the largest subgroup of the Asian American population in the US and in New York City (NYC) where they number 573,528 in 2021. Despite their numbers, current pain perceptions, expectations, and attitudes of Chinese Americans remains poorly understood, especially as related to postoperative pain. OBJECTIVE:A better understanding of pain experience among Chinese American patients is needed to inform strategies on improving pain management satisfaction. METHODS:A total of 27 Chinese American postoperative patients from a NYC health system were recruited for face-to-face surveys and interviews with a trained bilingual and bicultural Community Health Worker. Questions from the Survey on Disparities in Quality of Healthcare and Kleinman's Explanatory Model of Illness were integrated into the survey and topic guide. Topics of discussion included satisfaction with healthcare and pain management during hospital stay and health beliefs and practices. RESULTS:More than half of participants experienced language challenges that made it difficult to communicate with healthcare staff. In general, high levels of satisfaction with pain management were reported; however, participants reported feeling less comfortable asking healthcare teams questions. Common themes across interviews included: (1) pain was an expected outcome of the procedure and was thus perceived as tolerable; (2) the wish to not be a burden to others; (3) concerns about side effects of pain medications; and (4) a cultural and language mismatch between healthcare teams and patients on words being used to elicit pain and discomfort. CONCLUSION/CONCLUSIONS:Our project findings can inform pain management strategies and tools to serve the Chinese American patient population.
PMID: 39352441
ISSN: 2196-8837
CID: 5738802
Integrative multi-omics profiling in human decedents receiving pig heart xenografts
Schmauch, Eloi; Piening, Brian; Mohebnasab, Maedeh; Xia, Bo; Zhu, Chenchen; Stern, Jeffrey; Zhang, Weimin; Dowdell, Alexa K; Kim, Jacqueline I; Andrijevic, David; Khalil, Karen; Jaffe, Ian S; Loza, Bao-Li; Gragert, Loren; Camellato, Brendan R; Oliveira, Michelli F; O'Brien, Darragh P; Chen, Han M; Weldon, Elaina; Gao, Hui; Gandla, Divya; Chang, Andrew; Bhatt, Riyana; Gao, Sarah; Lin, Xiangping; Reddy, Kriyana P; Kagermazova, Larisa; Habara, Alawi H; Widawsky, Sophie; Liang, Feng-Xia; Sall, Joseph; Loupy, Alexandre; Heguy, Adriana; Taylor, Sarah E B; Zhu, Yinan; Michael, Basil; Jiang, Lihua; Jian, Ruiqi; Chong, Anita S; Fairchild, Robert L; Linna-Kuosmanen, Suvi; Kaikkonen, Minna U; Tatapudi, Vasishta; Lorber, Marc; Ayares, David; Mangiola, Massimo; Narula, Navneet; Moazami, Nader; Pass, Harvey; Herati, Ramin S; Griesemer, Adam; Kellis, Manolis; Snyder, Michael P; Montgomery, Robert A; Boeke, Jef D; Keating, Brendan J
In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.
PMID: 38760586
ISSN: 1546-170x
CID: 5654102
Endocytic vesicles act as vehicles for glucose uptake in response to growth factor stimulation
Tsutsumi, Ryouhei; Ueberheide, Beatrix; Liang, Feng-Xia; Neel, Benjamin G; Sakai, Ryuichi; Saito, Yoshiro
Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.
PMID: 38565573
ISSN: 2041-1723
CID: 5726222
Sample preparation and data collection for serial block face scanning electron microscopy of mammalian cell monolayers
Antao, Noelle V; Sall, Joseph; Petzold, Christopher; Ekiert, Damian C; Bhabha, Gira; Liang, Feng-Xia
Volume electron microscopy encompasses a set of electron microscopy techniques that can be used to examine the ultrastructure of biological tissues and cells in three dimensions. Two block face techniques, focused ion beam scanning electron microscopy (FIB-SEM) and serial block face scanning electron microscopy (SBF-SEM) have often been used to study biological tissue samples. More recently, these techniques have been adapted to in vitro tissue culture samples. Here we describe step-by-step protocols for two sample embedding methods for in vitro tissue culture cells intended to be studied using SBF-SEM. The first focuses on cell pellet embedding and the second on en face embedding. En face embedding can be combined with light microscopy, and this CLEM workflow can be used to identify specific biological events by light microscopy, which can then be imaged using SBF-SEM. We systematically outline the steps necessary to fix, stain, embed and image adherent tissue culture cell monolayers by SBF-SEM. In addition to sample preparation, we discuss optimization of parameters for data collection. We highlight the challenges and key steps of sample preparation, and the consideration of imaging variables.
PMCID:11315281
PMID: 39121154
ISSN: 1932-6203
CID: 5696952
3D reconstructions of parasite development and the intracellular niche of the microsporidian pathogen Encephalitozoon intestinalis
Antao, Noelle V; Lam, Cherry; Davydov, Ari; Riggi, Margot; Sall, Joseph; Petzold, Christopher; Liang, Feng-Xia; Iwasa, Janet H; Ekiert, Damian C; Bhabha, Gira
Microsporidia are an early-diverging group of fungal pathogens with a wide host range. Several microsporidian species cause opportunistic infections in humans that can be fatal. As obligate intracellular parasites with highly reduced genomes, microsporidia are dependent on host metabolites for successful replication and development. Our knowledge of microsporidian intracellular development remains rudimentary, and our understanding of the intracellular niche occupied by microsporidia has relied on 2D TEM images and light microscopy. Here, we use serial block-face scanning electron microscopy (SBF-SEM) to capture 3D snapshots of the human-infecting species, Encephalitozoon intestinalis, within host cells. We track E. intestinalis development through its life cycle, which allows us to propose a model for how its infection organelle, the polar tube, is assembled de novo in developing spores. 3D reconstructions of parasite-infected cells provide insights into the physical interactions between host cell organelles and parasitophorous vacuoles, which contain the developing parasites. The host cell mitochondrial network is substantially remodeled during E. intestinalis infection, leading to mitochondrial fragmentation. SBF-SEM analysis shows changes in mitochondrial morphology in infected cells, and live-cell imaging provides insights into mitochondrial dynamics during infection. Our data provide insights into parasite development, polar tube assembly, and microsporidia-induced host mitochondria remodeling.
PMID: 37996434
ISSN: 2041-1723
CID: 5608812
Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions
Zhao, Yu; Coelho, Camila; Hughes, Amanda L; Lazar-Stefanita, Luciana; Yang, Sandy; Brooks, Aaron N; Walker, Roy S K; Zhang, Weimin; Lauer, Stephanie; Hernandez, Cindy; Cai, Jitong; Mitchell, Leslie A; Agmon, Neta; Shen, Yue; Sall, Joseph; Fanfani, Viola; Jalan, Anavi; Rivera, Jordan; Liang, Feng-Xia; Bader, Joel S; Stracquadanio, Giovanni; Steinmetz, Lars M; Cai, Yizhi; Boeke, Jef D
The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASer
PMID: 37944511
ISSN: 1097-4172
CID: 5590882
The REEP5/TRAM1 complex binds SARS-CoV-2 NSP3 and promotes virus replication
Li, Jie; Gui, Qi; Liang, Feng-Xia; Sall, Joseph; Zhang, Qingyue; Duan, Yatong; Dhabaria, Avantika; Askenazi, Manor; Ueberheide, Beatrix; Stapleford, Kenneth A; Pagano, Michele
Generation of virus-host protein-protein interactions (PPIs) maps may provide clues to uncover SARS-CoV-2-hijacked cellular processes. However, these PPIs maps were created by expressing each viral protein singularly, which does not reflect the life situation in which certain viral proteins synergistically interact with host proteins. Our results reveal the host-viral protein-protein interactome of SARS-CoV-2 NSP3, NSP4, and NSP6 expressed individually or in combination. Furthermore, REEP5/TRAM1 complex interacts with NSP3 at ROs and promotes viral replication. The significance of our research is identifying virus-host interactions that may be targeted for therapeutic intervention.
PMCID:10617467
PMID: 37768083
ISSN: 1098-5514
CID: 5614142
A noncanonical function of SKP1 regulates the switch between autophagy and unconventional secretion
Li, Jie; Krause, Gregory J; Gui, Qi; Kaushik, Susmita; Rona, Gergely; Zhang, Qingyue; Liang, Feng-Xia; Dhabaria, Avantika; Anerillas, Carlos; Martindale, Jennifer L; Vasilyev, Nikita; Askenazi, Manor; Ueberheide, Beatrix; Nudler, Evgeny; Gorospe, Myriam; Cuervo, Ana Maria; Pagano, Michele
Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.
PMCID:10575587
PMID: 37831778
ISSN: 2375-2548
CID: 5604232
Bacterial contact induces polar plug disintegration to mediate whipworm egg hatching
Robertson, Amicha; Sall, Joseph; Venzon, Mericien; Olivas, Janet J; Zheng, Xuhui; Cammer, Michael; Antao, Noelle; Zhou, Chunyi; Devlin, Joseph C; Saes Thur, Rafaela; Bethony, Jeffrey; Nejsum, Peter; Shopsin, Bo; Torres, Victor J; Liang, Feng-Xia; Cadwell, Ken
The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.
PMID: 37738244
ISSN: 1553-7374
CID: 5627842