Try a new search

Format these results:

Searched for:

in-biosketch:yes

person:nudlee01

Total Results:

182


Elementary 3D organization of active and silenced E. coli genome

Gavrilov, Alexey A; Shamovsky, Ilya; Zhegalova, Irina; Proshkin, Sergey; Shamovsky, Yosef; Evko, Grigory; Epshtein, Vitaly; Rasouly, Aviram; Blavatnik, Anna; Lahiri, Sudipta; Rothenberg, Eli; Razin, Sergey V; Nudler, Evgeny
Unravelling how genomes are spatially organized and how their three-dimensional (3D) architecture drives cellular functions remains a major challenge in biology1,2. In bacteria, genomic DNA is compacted into a highly ordered, condensed state called nucleoid3-5. Despite progress in characterizing bacterial 3D genome architecture over recent decades6-8, the fine structure and functional organization of the nucleoid remain elusive due to low-resolution contact maps from methods such as Hi-C9-11. Here we developed an enhanced Micro-C chromosome conformation capture, achieving 10-base pair (bp) resolution. This ultra-high-resolution analysis reveals elemental spatial structures in the Escherichia coli nucleoid, including chromosomal hairpins (CHINs) and chromosomal hairpin domains (CHIDs). These structures, organized by histone-like proteins H-NS and StpA, have key roles in repressing horizontally transferred genes. Disruption of H-NS causes drastic reorganization of the 3D genome, decreasing CHINs and CHIDs, whereas removing both H-NS and StpA results in their complete disassembly, increased transcription of horizontally transferred genes and delayed growth. Similar effects are observed with netropsin, which competes with H-NS and StpA for AT-rich DNA binding. Interactions between CHINs further organize the genome into isolated loops, potentially insulating active operons. Our Micro-C analysis reveals that all actively transcribed genes form distinct operon-sized chromosomal interaction domains (OPCIDs) in a transcription-dependent manner. These structures appear as square patterns on Micro-C maps, reflecting continuous contacts throughout transcribed regions. This work unveils the fundamental structural elements of the E. coli nucleoid, highlighting their connection to nucleoid-associated proteins and transcription machinery.
PMID: 40804527
ISSN: 1476-4687
CID: 5907442

Transcription-coupled repair: protecting genome across generations

Pani, Bibhusita; Nudler, Evgeny
The primary objective of life is to ensure the faithful transmission of genetic material across generations, despite the constant threat posed by DNA-damaging factors. To counter these challenges, life has evolved intricate mechanisms to detect, signal, and repair DNA damage, thereby preventing mutations that can cause developmental abnormalities or diseases. DNA repair is especially vital during development - a period of rapid cell proliferation and differentiation. Failure to repair DNA damage in somatic cells can result in tissue dysfunction, while during embryonic development, it is often fatal. Transcription machinery plays a key role in the mechanisms of DNA repair. This review highlights current insights into DNA repair pathways that are driven or facilitated by transcription and their essential contribution to preserving genome stability.
PMID: 40768825
ISSN: 1879-0380
CID: 5905152

Ribose-5-phosphate metabolism protects E. coli from antibiotic lethality

Seregina, Tatyana; Shakulov, Rustem; Quarta, Giulio; Shatalin, Konstantin; Sklyarova, Svetlana; Petrushanko, Irina; Fedulov, Artemy P; Ivanov, Alexander V; Mitkevich, Vladimir; Makarov, Alexander; Mironov, Alexander S; Nudler, Evgeny
In Escherichia coli, ribose-5-phosphate (R5P) biosynthesis occurs via two distinct pathways: an oxidative branch of the pentose phosphate pathway (PPP) originating from glucose-6-phosphate, and a reversed non-oxidative branch originating from fructose-6-phosphate, which relies on transaldolases TalA and TalB. Remarkably, we found that disrupting the oxidative PPP branch by deleting the zwf gene significantly increased bacterial susceptibility to killing by a variety of antibiotics. Surprisingly, additional mutations in the talA and talB genes further enhanced bacterial sensitivity to oxidative stress and antibiotic-mediated killing though they had little impact on the minimal inhibitory concentrations (MICs). The hypersensitivity observed in the zwf talAB mutant could be fully reversed by the processes that either utilize R5P or limited its accumulation. Specifically, activating the purine biosynthetic regulon or inhibiting nucleoside catabolism via deoB gene inactivation, which blocks the conversion of ribose-1-phosphate to R5P, restored bacterial tolerance. Furthermore, enhancing the biosynthesis of cell wall component ADP-heptose from sedoheptulose-7-phosphate suppressed antibiotic killing of the zwf talAB mutant. Biochemical analysis confirmed a direct link between elevated intracellular R5P levels and increased bacterial susceptibility to antibiotics-induced killing. These findings suggest that targeting the PPP could be a promising strategy for developing new therapeutic approaches aimed at potentiating clinically relevant antibiotics.IMPORTANCERecent studies have revealed the crucial role of bacterial cell's metabolic status in its susceptibility to the lethal action of antibacterial drugs. However, there is still no clear understanding of which key metabolic nodes are optimal targets to improve the effectiveness of bacterial infection treatment. Our study establishes that the disruption of the canonical pentose phosphate pathway induces one-way anabolic synthesis of pentose phosphates (aPPP) in E. coli cells, increasing the killing efficiency of various antibiotics. It is also demonstrated that the activation of ribose-5-phosphate utilization processes restores bacterial tolerance to antibiotics. We consider the synthesis of ribose-5-phosphate to be one of the determining factors of bacterial cell stress resistance. Understanding bacterial metabolic pathways, particularly the aPPP's role in antibiotic sensitivity, offers insights for developing novel adjuvant therapeutic strategies to enhance antibiotic potency.
PMID: 40600718
ISSN: 2150-7511
CID: 5887972

Addendum: Unravelling cysteine-deficiency-associated rapid weight loss

Varghese, Alan; Gusarov, Ivan; Gamallo-Lana, Begoña; Dolgonos, Daria; Mankan, Yatin; Shamovsky, Ilya; Phan, Mydia; Jones, Rebecca; Gomez-Jenkins, Maria; White, Eileen; Wang, Rui; Jones, Drew R; Papagiannakopoulos, Thales; Pacold, Michael E; Mar, Adam C; Littman, Dan R; Nudler, Evgeny
PMID: 40579778
ISSN: 1476-4687
CID: 5887242

Unravelling cysteine-deficiency-associated rapid weight loss

Varghese, Alan; Gusarov, Ivan; Gamallo-Lana, Begoña; Dolgonos, Daria; Mankan, Yatin; Shamovsky, Ilya; Phan, Mydia; Jones, Rebecca; Gomez-Jenkins, Maria; White, Eileen; Wang, Rui; Jones, Drew R; Papagiannakopoulos, Thales; Pacold, Michael E; Mar, Adam C; Littman, Dan R; Nudler, Evgeny
Around 40% of the US population and 1 in 6 individuals worldwide have obesity, with the incidence surging globally1,2. Various dietary interventions, including carbohydrate, fat and, more recently, amino acid restriction, have been explored to combat this epidemic3-6. Here we investigated the impact of removing individual amino acids on the weight profiles of mice. We show that conditional cysteine restriction resulted in the most substantial weight loss when compared to essential amino acid restriction, amounting to 30% within 1 week, which was readily reversed. We found that cysteine deficiency activated the integrated stress response and oxidative stress response, which amplify each other, leading to the induction of GDF15 and FGF21, partly explaining the phenotype7-9. Notably, we observed lower levels of tissue coenzyme A (CoA), which has been considered to be extremely stable10, resulting in reduced mitochondrial functionality and metabolic rewiring. This results in energetically inefficient anaerobic glycolysis and defective tricarboxylic acid cycle, with sustained urinary excretion of pyruvate, orotate, citrate, α-ketoglutarate, nitrogen-rich compounds and amino acids. In summary, our investigation reveals that cysteine restriction, by depleting GSH and CoA, exerts a maximal impact on weight loss, metabolism and stress signalling compared with other amino acid restrictions. These findings suggest strategies for addressing a range of metabolic diseases and the growing obesity crisis.
PMID: 40399674
ISSN: 1476-4687
CID: 5853222

In the shadow of antibiotics [Comment]

Rasouly, Aviram; Nudler, Evgeny
PMID: 39928882
ISSN: 1091-6490
CID: 5793202

Structural mechanism of HP1⍺-dependent transcriptional repression and chromatin compaction

Sokolova, Vladyslava; Miratsky, Jacob; Svetlov, Vladimir; Brenowitz, Michael; Vant, John; Lewis, Tyler S; Dryden, Kelly; Lee, Gahyun; Sarkar, Shayan; Nudler, Evgeny; Singharoy, Abhishek; Tan, Dongyan
Heterochromatin protein 1 (HP1) plays a central role in establishing and maintaining constitutive heterochromatin. However, the mechanisms underlying HP1-nucleosome interactions and their contributions to heterochromatin functions remain elusive. Here, we present the cryoelectron microscopy (cryo-EM) structure of an HP1α dimer bound to an H2A.Z-nucleosome, revealing two distinct HP1α-nucleosome interfaces. The primary HP1α binding site is located at the N terminus of histone H3, specifically at the trimethylated lysine 9 (K9me3) region, while a secondary binding site is situated near histone H2B, close to nucleosome superhelical location 4 (SHL4). Our biochemical data further demonstrates that HP1α binding influences the dynamics of DNA on the nucleosome. It promotes DNA unwrapping near the nucleosome entry and exit sites while concurrently restricting DNA accessibility in the vicinity of SHL4. Our study offers a model for HP1α-mediated heterochromatin maintenance and gene silencing. It also sheds light on the H3K9me-independent role of HP1 in responding to DNA damage.
PMID: 39383876
ISSN: 1878-4186
CID: 5730192

Rho and riboswitch-dependent regulations of mntP gene expression evade manganese and membrane toxicities

Prakash, Anand; Kalita, Arunima; Bhardwaj, Kanika; Mishra, Rajesh Kumar; Ghose, Debarghya; Kaur, Gursharan; Verma, Neha; Pani, Bibhusita; Nudler, Evgeny; Dutta, Dipak
The trace metal ion manganese (Mn) in excess is toxic. Therefore, a small subset of factors tightly maintains its cellular level, among which an efflux protein MntP is the champion. Multiple transcriptional regulators and a manganese-dependent translational riboswitch regulate the MntP expression in Escherichia coli. As riboswitches are untranslated RNAs, they are often associated with the Rho-dependent transcription termination in bacteria. Here, performing in vitro transcription and in vivo reporter assays, we demonstrate that Rho efficiently terminates transcription at the mntP riboswitch region. Excess manganese activates the riboswitch, restoring the coupling between transcription and translation to evade Rho-dependent transcription termination partially. RT-PCR and western blot experiments revealed that the deletion of the riboswitch abolishes Rho-dependent termination and thereby overexpresses MntP. Interestingly, deletion of the riboswitch also renders bacteria sensitive to manganese. This manganese sensitivity is linked with the overexpression of MntP. Further spot assays, confocal microscopy, and flow cytometry experiments revealed that the high level of MntP expression was responsible for slow growth, cell filamentation, and reactive oxygen species (ROS) production. We posit that manganese-dependent transcriptional activation of mntP in the absence of Rho-dependent termination leads to excessive MntP expression, a membrane protein, causing membrane protein toxicity. Thus, we show a regulatory role of Rho-dependent termination, which prevents membrane protein toxicity by limiting MntP expression.
PMID: 39510182
ISSN: 1083-351x
CID: 5752072

Unraveling cysteine deficiency-associated rapid weight loss

Varghese, Alan; Gusarov, Ivan; Gamallo-Lana, Begoña; Dolgonos, Daria; Mankan, Yatin; Shamovsky, Ilya; Phan, Mydia; Jones, Rebecca; Gomez-Jenkins, Maria; White, Eileen; Wang, Rui; Jones, Drew; Papagiannakopoulos, Thales; Pacold, Michael E; Mar, Adam C; Littman, Dan R; Nudler, Evgeny
Forty percent of the US population and 1 in 6 individuals worldwide are obese, and the incidence of this disease is surging globally1,2. Various dietary interventions, including carbohydrate and fat restriction, and more recently amino acid restriction, have been explored to combat this epidemic3-6. We sought to investigate the impact of removing individual amino acids on the weight profiles of mice. Compared to essential amino acid restriction, induction of conditional cysteine restriction resulted in the most dramatic weight loss, amounting to 20% within 3 days and 30% within one week, which was readily reversed. This weight loss occurred despite the presence of substantial cysteine reserves stored in glutathione (GSH) across various tissues7. Further analysis demonstrated that the weight reduction primarily stemmed from an increase in the utilization of fat mass, while locomotion, circadian rhythm and histological appearance of multiple other tissues remained largely unaffected. Cysteine deficiency activated the integrated stress response (ISR) and NRF2-mediated oxidative stress response (OSR), which amplify each other, leading to the induction of GDF15 and FGF21, hormones associated with increased lipolysis, energy homeostasis and food aversion8-10. We additionally observed rapid tissue coenzyme A (CoA) depletion, resulting in energetically inefficient anaerobic glycolysis and TCA cycle, with sustained urinary excretion of pyruvate, orotate, citrate, α-ketoglutarate, nitrogen rich compounds and amino acids. In summary, our investigation highlights that cysteine restriction, by depleting GSH and CoA, exerts a maximal impact on weight loss, metabolism, and stress signaling compared to other amino acid restrictions. These findings may pave the way for innovative strategies for addressing a range of metabolic diseases and the growing obesity crisis.
PMCID:11312522
PMID: 39131293
ISSN: 2692-8205
CID: 5688592

Persistence of backtracking by human RNA polymerase II

Yang, Kevin B; Rasouly, Aviram; Epshtein, Vitaly; Martinez, Criseyda; Nguyen, Thao; Shamovsky, Ilya; Nudler, Evgeny
RNA polymerase II (RNA Pol II) can backtrack during transcription elongation, exposing the 3' end of nascent RNA. Nascent RNA sequencing can approximate the location of backtracking events that are quickly resolved; however, the extent and genome-wide distribution of more persistent backtracking are unknown. Consequently, we developed a method to directly sequence the extruded, "backtracked" 3' RNA. Our data show that RNA Pol II slides backward more than 20 nt in human cells and can persist in this backtracked state. Persistent backtracking mainly occurs where RNA Pol II pauses near promoters and intron-exon junctions and is enriched in genes involved in translation, replication, and development, where gene expression is decreased if these events are unresolved. Histone genes are highly prone to persistent backtracking, and the resolution of such events is likely required for timely expression during cell division. These results demonstrate that persistent backtracking can potentially affect diverse gene expression programs.
PMID: 38340716
ISSN: 1097-4164
CID: 5635502