Searched for: in-biosketch:yes
person:silvea09
The new Mobile Universal Lexicon Evaluation System (MULES): A test of rapid picture naming for concussion sized for the sidelines
Akhand, Omar; Galetta, Matthew S; Cobbs, Lucy; Hasanaj, Lisena; Webb, Nikki; Drattell, Julia; Amorapanth, Prin; Rizzo, John-Ross; Nolan, Rachel; Serrano, Liliana; Rucker, Janet C; Cardone, Dennis; Jordan, Barry D; Silverio, Arlene; Galetta, Steven L; Balcer, Laura J
OBJECTIVE:Measures of rapid automatized naming (RAN) have been used for over 50 years to capture vision-based aspects of cognition. The Mobile Universal Lexicon Evaluation System (MULES) is a test of rapid picture naming under investigation for detection of concussion and other neurological disorders. MULES was designed as a series of 54 grouped color photographs (fruits, random objects, animals) that integrates saccades, color perception and contextual object identification. Recent changes to the MULES test have been made to improve ease of use on the athletic sidelines. Originally an 11 × 17-inch single-sided paper, the test has been reduced to a laminated 8.5 × 11-inch double-sided version. We identified performance changes associated with transition to the new, MULES, now sized for the sidelines, and examined MULES on the sideline for sports-related concussion. METHODS:We administered the new laminated MULES to a group of adult office volunteers as well as youth and collegiate athletes during pre-season baseline testing. Athletes with concussion underwent sideline testing after injury. Time scores for the new laminated MULES were compared to those for the larger version (big MULES). RESULTS:Among 501 athletes and office volunteers (age 16 ± 7 years, range 6-59, 29% female), average test times at baseline were 44.4 ± 14.4 s for the new laminated MULES (n = 196) and 46.5 ± 16.3 s for big MULES (n = 248). Both versions were completed by 57 participants, with excellent agreement (p < 0.001, linear regression, accounting for age). Age was a predictor of test times for both MULES versions, with longer times noted for younger participants (p < 0.001). Among 6 athletes with concussion thus far during the fall sports season (median age 15 years, range 11-21) all showed worsening of MULES scores from pre-season baseline (median 4.0 s, range 2.1-16.4). CONCLUSION/CONCLUSIONS:The MULES test has been converted to an 11 × 8.5-inch laminated version, with excellent agreement between versions across age groups. Feasibly administered at pre-season and in an office setting, the MULES test shows preliminary evidence of capacity to identify athletes with sports-related concussion.
PMCID:6022286
PMID: 29571863
ISSN: 1878-5883
CID: 3001632
The New MULES: A Sideline-Friendly Test of Rapid Picture Naming for Concussion [Meeting Abstract]
Akhand, Omar; Galetta, Matthew; Hasanaj, Lisena; Cobbs, Lucy; Webb, Nikki; Brandt, Julia; Amorapanth, Prin; Rizzo, John-Ross; Serrano, Liliana; Nolan, Rachel; Rucker, Janet; Silverio, Arlene; Jordan, Barry; Galetta, Steven; Balcer, Laura
ISI:000453090801159
ISSN: 0028-3878
CID: 3562002
Mobile universal lexicon evaluation system (MULES): Pre-season baseline concussion testing for a new measure of rapid picture naming [Meeting Abstract]
Cobbs, L; Hasanaj, L; Webb, N; Brandt, J; Amorapanth, P; Rizzo, J -R; Nolan, R; Serrano, L; Raynowska, J; Rucker, J; Jordan, B; Silverio, A; Galetta, S; Balcer, L
Objective: This study introduces the Mobile Universal Lexicon Evaluation System (MULES), a new vision-based test of rapid picture naming, in a cohort of youth and collegiate athletes at pre-season concussion testing. Background: Vision-based measures of rapid number naming (King-Devick [K-D]) have improved the sensitivity of sports-related concussion screening. K-D requires saccades and vergence, measuring aspects of frontal, parietal and brainstem centers. We developed the MULES to capture a more extensive vision network, integrating saccades, color perception, and object identification. Design/Methods: We administered MULES and K-D to youth and collegiate athletes during pre-season baseline testing. Sports for 2016-17 included ice hockey, football, soccer, volleyball and wrestling. Test administration order was randomized. Results: Among 165 athletes (age 14+/-5 years, range 6-24, 25% female), average K-D times (59.9+/-29.7 seconds) were similar to MULES (57.9+/-20.4 seconds). Higher K-D times predicted greater MULES times, accounting for age (p<0.001, linear regression). Age was itself a predictor of K-D and MULES time scores, with longer times noted for younger participants (p<0.001). Faster times with increasing age were noted primarily among athletes <16 years for K-D and <15 years for MULES. MULES showed greater degrees of improvement between two baseline trials (57.9 vs. 51.2 seconds, p<0.0001, paired t-test), vs. K-D (59.9 vs. 58.3 seconds, p=0.01). Conclusions: A complex task, the MULES test of rapid picture naming involves a more extensive visual network that captures not only rapid saccades but color perception and the characterization of objects. Color recognition is early in object processing and requires area V4 and the inferior temporal projections. In contrast, rapid number naming appears to engage a specific area of the inferior temporal cortex. Both tests use the centers responsible for initiating and sequencing saccadic eye movements, and will be further examined in our youth and collegiate cohorts during this athletic season for their ability to detect concussion
EMBASE:616552046
ISSN: 1526-632x
CID: 2608662
Mobile Universal Lexicon Evaluation System (MULES): Pre-Season Baseline Concussion Testing for a New Measure of Rapid Picture Naming [Meeting Abstract]
Cobbs, Lucy; Hasanaj, Lisena; Webb, Nikki; Brandt, Julia; Amorapanth, Prin; Rizzo, John-Ross; Nolan, Rachel; Serrano, Liliana; Raynowska, Jenelle; Rucker, Janet; Jordan, Barry; Silverio, Arlene; Galetta, Steven; Balcer, Laura
ISI:000577381505001
ISSN: 0028-3878
CID: 5524312
Agreement of the Spiral-Bound and Computerized Tablet Versions of the King-Devick Test of Rapid Number Naming for Sports Related Concussion [Meeting Abstract]
Raynowska, Jenelle; Hasanaj, Lisena; Silverio, Arlene; Rucker, Janet; Galetta, Steven; Balcer, Laura
ISI:000411328608422
ISSN: 0028-3878
CID: 2962262
Adding Vision to Concussion Testing: A Prospective Study of Sideline Testing in Youth and Collegiate Athletes
Galetta, Kristin M; Morganroth, Jennifer; Moehringer, Nicholas; Mueller, Bridget; Hasanaj, Lisena; Webb, Nikki; Civitano, Courtney; Cardone, Dennis A; Silverio, Arlene; Galetta, Steven L; Balcer, Laura J
BACKGROUND:: Sports-related concussion commonly affects the visual pathways. Current sideline protocols test cognition and balance but do not include assessments of visual performance. We investigated how adding a vision-based test of rapid number naming could increase our ability to identify concussed athletes on the sideline at youth and collegiate levels. METHODS:: Participants in this prospective study included members of a youth ice hockey and lacrosse league and collegiate athletes from New York University and Long Island University. Athletes underwent preseason baseline assessments using: 1) the King-Devick (K-D) test, a <2-minute visual performance measure of rapid number naming, 2) the Standardized Assessment of Concussion (SAC), a test of cognition, and 3) a timed tandem gait test of balance. The SAC and timed tandem gait are components of the currently used Sport Concussion Assessment Tool, 3rd Edition (SCAT3 and Child-SCAT3). In the event of a concussion during the athletic season, injured athletes were retested on the sideline/rink-side. Nonconcussed athletes were also assessed as control participants under the same testing conditions. RESULTS:: Among 243 youth (mean age 11 +/- 3 years, range 5-17) and 89 collegiate athletes (age 20 +/- 1 years, range 18-23), baseline time scores for the K-D test were lower (better) with increasing participant age (P < 0.001, linear regression models). Among 12 athletes who sustained concussions during their athletic season, K-D scores worsened from baseline by an average of 5.2 seconds; improvement by 6.4 seconds was noted for the nonconcussed controls (n = 14). The vision-based K-D test showed the greatest capacity to distinguish concussed vs control athletes based on changes from preseason baseline to postinjury (receiver operating characteristic [ROC] curve areas from logistic regression models, accounting for age = 0.92 for K-D, 0.87 for timed tandem gait, and 0.68 for SAC; P = 0.0004 for comparison of ROC curve areas). CONCLUSIONS:: Adding a vision-based performance measure to cognitive and balance testing enhances the detection capabilities of current sideline concussion assessment. This observation in patients with mild traumatic brain injury reflects the common involvement and widespread distribution of brain pathways dedicated to vision.
PMID: 25742059
ISSN: 1070-8022
CID: 1480762