Try a new search

Format these results:

Searched for:

person:friedk03

Total Results:

86


Radiotherapy induces responses of lung cancer to CTLA-4 blockade

Formenti, Silvia C; Rudqvist, Nils-Petter; Golden, Encouse; Cooper, Benjamin; Wennerberg, Erik; Lhuillier, Claire; Vanpouille-Box, Claire; Friedman, Kent; Ferrari de Andrade, Lucas; Wucherpfennig, Kai W; Heguy, Adriana; Imai, Naoko; Gnjatic, Sacha; Emerson, Ryan O; Zhou, Xi Kathy; Zhang, Tuo; Chachoua, Abraham; Demaria, Sandra
Focal radiation therapy enhances systemic responses to anti-CTLA-4 antibodies in preclinical studies and in some patients with melanoma1-3, but its efficacy in inducing systemic responses (abscopal responses) against tumors unresponsive to CTLA-4 blockade remained uncertain. Radiation therapy promotes the activation of anti-tumor T cells, an effect dependent on type I interferon induction in the irradiated tumor4-6. The latter is essential for achieving abscopal responses in murine cancers6. The mechanisms underlying abscopal responses in patients treated with radiation therapy and CTLA-4 blockade remain unclear. Here we report that radiation therapy and CTLA-4 blockade induced systemic anti-tumor T cells in chemo-refractory metastatic non-small-cell lung cancer (NSCLC), where anti-CTLA-4 antibodies had failed to demonstrate significant efficacy alone or in combination with chemotherapy7,8. Objective responses were observed in 18% of enrolled patients, and 31% had disease control. Increased serum interferon-β after radiation and early dynamic changes of blood T cell clones were the strongest response predictors, confirming preclinical mechanistic data. Functional analysis in one responding patient showed the rapid in vivo expansion of CD8 T cells recognizing a neoantigen encoded in a gene upregulated by radiation, supporting the hypothesis that one explanation for the abscopal response is radiation-induced exposure of immunogenic mutations to the immune system.
PMID: 30397353
ISSN: 1546-170x
CID: 3455792

Comparison of hybrid 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging and positron emission tomography/computed tomography for evaluation of peripheral nerve sheath tumors in patients with neurofibromatosis type 1

Raad, Roy A; Lala, Shailee; Allen, Jeffrey C; Babb, James; Mitchell, Carole Wind; Franceschi, Ana M; Yohay, Kaleb; Friedman, Kent P
Rapidly enlarging, painful plexiform neurofibromas (PN) in neurofibromatosis type 1 (NF1) patients are at higher risk for harboring a malignant peripheral nerve sheath tumor (MPNST). Fludeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) has been used to support more invasive diagnostic and therapeutic interventions. However, PET/CT imparts an untoward radiation hazard to this population with tumor suppressor gene impairment. The use of FDG PET coupled with magnetic resonance imaging (MRI) rather than CT is a safer alternative but its relative diagnostic sensitivity requires verification. Ten patients (6 females, 4 males, mean age 27 years, range 8-54) with NF1 and progressive PN were accrued from our institutional NF Clinic. Indications for PET scanning included increasing pain and/or progressive disability associated with an enlarging PN on serial MRIs. Following a clinically indicated whole-body FDG PET/CT, a contemporaneous PET/MRI was obtained using residual FDG activity with an average time interval of 3-4 h FDG-avid lesions were assessed for both maximum standardized uptake value (SUVmax) from PET/CT and SUVmax from PET/MR and correlation was made between the two parameters. 26 FDG avid lesions were detected on both PET/CT and PET/MR with an accuracy of 100%. SUVmax values ranged from 1.4-10.8 for PET/CT and from 0.2-5.9 for PET/MRI. SUVmax values from both modalities demonstrated positive correlation (r = 0.45, P < 0.001). PET/MRI radiation dose was significantly lower (53.35% ± 14.37% [P = 0.006]). In conclusion, PET/MRI is a feasible alternative to PET/CT in patients with NF1 when screening for the potential occurrence of MPNST. Reduction in radiation exposure approaches 50% compared to PET/CT.
PMCID:6216733
PMID: 30505221
ISSN: 1450-1147
CID: 3520172

Visual detection of regional brain hypometabolism in cognitively impaired patients is independent of positron emission tomography-magnetic resonance attenuation correction method

Franceschi, Ana M; Abballe, Valentino; Raad, Roy A; Nelson, Aaron; Jackson, Kimberly; Babb, James; Vahle, Thomas; Fenchel, Matthias; Zhan, Yiqiang; Valadez, Gerardo Hermosillo; Shepherd, Timothy M; Friedman, Kent P
Fluorodeoxyglucose (FDG) positron emission tomography-magnetic resonance (PET/MR) is useful for the evaluation of cognitively-impaired patients. This study aims to assess two different attenuation correction (AC) methods (Dixon-MR and atlas-based) versus index-standard computed tomography (CT) AC for the visual interpretation of regional hypometabolism in patients with cognitive impairment. Two board-certified nuclear medicine physicians blindly scored brain region FDG hypometabolism as normal versus hypometabolic using two-dimensional (2D) and 3D FDG PET/MR images generated by MIM software. Regions were quantitatively assessed as normal versus mildly, moderately, or severely hypometabolic. Hypometabolism scores obtained using the different methods of AC were compared, and interreader, as well as intra-reader agreement, was assessed. Regional hypometabolism versus normal metabolism was correctly classified in 16 patients on atlas-based and Dixon-based AC map PET reconstructions (vs. CT reference AC) for 94% (90%-96% confidence interval [CI]) and 93% (89%-96% CI) of scored regions, respectively. The averaged sensitivity/specificity for detection of any regional hypometabolism was 95%/94% (P = 0.669) and 90%/91% (P = 0.937) for atlas-based and Dixon-based AC maps. Interreader agreement for detection of regional hypometabolism was high, with similar outcome assessments when using atlas- and Dixon-corrected PET data in 93% (Κ =0.82) and 93% (Κ =0.84) of regions, respectively. Intrareader agreement for detection of regional hypometabolism was high, with concordant outcome assessments when using atlas- and Dixon-corrected data in 93%/92% (Κ =0.79) and 92/93% (Κ =0.78). Despite the quantitative advantages of atlas-based AC in brain PET/MR, routine clinical Dixon AC yields comparable visual ratings of regional hypometabolism in the evaluation of cognitively impaired patients undergoing brain PET/MR and is similar in performance to CT-based AC. Therefore, Dixon AC is acceptable for the routine clinical evaluation of dementia syndromes.
PMCID:6034547
PMID: 30034284
ISSN: 1450-1147
CID: 3215992

Multi-parametric FDG PET/MRI as an early predictor of response to neoadjuvant chemotherapy in patients wit epithelial ovarian cancer [Meeting Abstract]

Franceschi, A; Pothuri, B; Frey, M; Chandarana, H; Jackson, K; Friedman, K
Purpose: There is limited data regarding how many cycles of chemotherapy are optimal prior to debulking surgery in metastatic ovarian cancer. Furthermore, early identification of non-responders would prompt discontinuation of chemotherapy and earlier surgical management. The purpose of our study was to investigate the performance of FDG PET, dynamic contrast-enhanced (DCE) and intra-voxel incoherent motion (IVIM) MR as early predictors of treatment response in ovarian cancer. Parametric images of molecular diffusion restriction (D), tissue perfusion (D[asterisk]), vascular volume fraction (F), blood->interstitium constant of transfer (Ktrans), interstitum->plasma constant of transfer (Kep), extravascular/extracellular volume % (Ve) and plasma volume % (Ve) were investigated along with routine measures of SUV and ADC. Materials & Methods: Five subjects with a new diagnosis of epithelial ovarian cancer enrolled in the study. All subjects underwent 3 cycles of standardized chemotherapy followed by cytoreduction (debulking surgery). FDG PET/MR including DCE and IVIM was performed at baseline (T1), after cycle 1 (T2) and after cycle 3 (T3) of chemotherapy. Final responses were categorized at T3 by RECIST 1.1. Olea 3.0 software was used to generate parametric images from the multi-B-value DWI and DCE-MR datasets at all three timepoints. Parametric DICOM images were then coregistered to anatomical datasets using MIMvista and fusion was manually adjusted to optimize co-registration of tumor lesions across the multiple datasets. VOIs were manually drawn on clearly visible solid tumor deposits on PET, DCE-MR and DWI MR images. The parametric images derived from IVIM and DCE-MR at T2 were analyzed as early predictors of final response. Results: Five subjects completed FDG PET and IVIM-MR, three of which underwent DCE-MR. All subjects were partial responders by RECIST at T3. SUV values were only available for 4/5 patients due to technical difficulties and DCE-MR was only available for 3/5. All 5 subjects had good IVIM data. At T2, the SUVmax decreased on average by -39% across all subjects (p<0.001) and the SUVmean decreased on average by -43% across all subjects (p<0.001). At T2, the ADCmean increased on average by +25% across all subjects (p<0.05). At T2, the molecular diffusion restriction (D) increased on average by +43% across all subjects, approaching statistical significance (p=0.058). Furthermore, D[asterisk], F, Kep, Ktrans, and Vp increased in some subjects and decreased in others, without any recognizable pattern. Ve decreased in 3/3 patients, however, not reaching statistical significance. Conclusions: In this current FDG PET/MR study of ovarian cancer, SUVmax and ADCmean values obtained after one cycle of chemotherapy were consistently associated with partial anatomical treatment responses at end of therapy. These findings are in agreement with pre-existing literature studying the value of SUV and ADC in early treatment response assessment. Only one of seven advanced perfusion/diffusion metrics (D; molecular diffusion restriction) was reliably associated with treatment response. This finding that D is associated with treatment response is not surprising given that it is based on ADC without the contribution of intravascular diffusion. Our current small dataset does not yet demonstrate the value of the remaining analyzed advanced DCE-MR and DWI parameters. Further study is required to determine the utility of DCE- and IVIM-derived parameters in early response assessment. Voxelwise correlative studies and other advanced data processing methods are underway to determine if these advanced quantitative parameters may provide further information in the early assessment of chemotherapy treatment response. (Table Presented)
EMBASE:623022301
ISSN: 0161-5505
CID: 3204052

A phase I trial of ganetespib in combination with paclitaxel and trastuzumab in patients with human epidermal growth factor receptor-2 (HER2)-positive metastatic breast cancer

Jhaveri, Komal; Wang, Rui; Teplinsky, Eleonora; Chandarlapaty, Sarat; Solit, David; Cadoo, Karen; Speyer, James; D'Andrea, Gabriella; Adams, Sylvia; Patil, Sujata; Haque, Sofia; O'Neill, Tara; Friedman, Kent; Esteva, Francisco J; Hudis, Clifford; Modi, Shanu
BACKGROUND: Targeted therapies in HER2-positive metastatic breast cancer significantly improve outcomes but efficacy is limited by therapeutic resistance. HER2 is an acutely sensitive Heat Shock Protein 90 (HSP90) client and HSP90 inhibition can overcome trastuzumab resistance. Preclinical data suggest that HSP90 inhibition is synergistic with taxanes with the potential for significant clinical activity. We therefore tested ganetespib, a HSP90 inhibitor, in combination with paclitaxel and trastuzumab in patients with trastuzumab-refractory HER2-positive metastatic breast cancer. METHODS: In this phase I dose-escalation study, patients with trastuzumab-resistant HER2-positive metastatic breast cancer received weekly trastuzumab (2 mg/kg) and paclitaxel (80 mg/m2) on days 1, 8, 15, and 22 of a 28-day cycle with escalating doses of ganetespib (100 mg/m2, 150 mg/m2, and a third cohort of 125 mg/m2 if needed) on days 1, 8, and 15. Therapy was continued until disease progression or toxicity. The primary objective was to establish the safety and maximum tolerated dose and/or recommended phase II dose (RP2D) of this therapy. The secondary objectives included evaluation of the effects of ganetespib on the pharmacokinetics of paclitaxel, and to make a preliminary assessment of the efficacy of the combination therapy. RESULTS: Dose escalation was completed for the two main cohorts without any observed dose-limiting toxicities. Nine patients received treatment. The median prior lines of anti-HER2 therapy numbered three (range 2-4), including prior pertuzumab in 9/9 patients and ado-trastuzumab emtansine (T-DM1) in 8/9 patients. The most common grade 1/2 adverse events (AEs) were diarrhea, fatigue, anemia, and rash. There were no grade 4 AEs related to ganetespib. The overall response rate was 22% (2/9 patients had partial response) and stable disease was seen in 56% (5/9 patients). The clinical benefit rate was 44% (4/9 patients). The median progression-free survival was 20 weeks (range 8-55). CONCLUSION: The RP2D of ganetespib is 150 mg/m2 in combination with weekly paclitaxel plus trastuzumab. The combination was safe and well tolerated. Despite prior taxanes, pertuzumab, and T-DM1, clinical activity of this triplet regimen in this heavily pretreated cohort is promising and warrants further study in HER2-positive metastatic breast cancer. TRIAL REGISTRATION: ClinicalTrials.gov NCT02060253 . Registered 30 January 2014.
PMCID:5540198
PMID: 28764748
ISSN: 1465-542x
CID: 2655712

Prospective Pilot Study to Evaluate the Incremental Value of PET Information in Patients With Bladder Cancer Undergoing 18F-FDG Simultaneous PET/MRI

Rosenkrantz, Andrew B; Friedman, Kent P; Ponzo, Fabio; Raad, Roy A; Jackson, Kimberly; Huang, William C; Balar, Arjun V
PURPOSE: The aim of this study was to conduct a prospective pilot study comparing the diagnostic performance of MRI alone and F-FDG simultaneous PET/MRI using a diuresis protocol in bladder cancer patients. METHODS: Twenty-two bladder cancer patients underwent F-FDG PET/MRI, using intravenous furosemide and oral hydration for bladder clearance. A radiologist scored probability of tumor in 3 locations (urinary bladder, pelvic lymph nodes, nonnodal pelvis) using 1- to 3-point scale (1 = negative, 2 = equivocal, 3 = definite tumor). A nuclear medicine physician reviewed fused PET/MRI images, after which scores were reassigned based on combined findings. Follow-up pathologic and imaging data served as reference. Performances of MRI alone and PET/MRI were compared. RESULTS: Of these patients, 82%, 38%, and 18% were positive for bladder, pelvic nodal, and nonnodal pelvic tumor, respectively. At a score of 3, PET/MRI exhibited greater accuracy for detection of bladder tumor (86% vs 77%), metastatic pelvic lymph nodes (95% vs 76%), and nonnodal pelvic malignancy (100% vs 91%). In the bladder, PET changed the level of suspicion in 36% of patients (50% increased suspicion, 50% decreased suspicion), with 75% of these changes deemed correct based on reference standard. For pelvic lymph nodes, PET changed suspicion in 52% (36% increase, 64% decrease), with 95% of changes deemed correct. For nonnodal pelvis, PET changed suspicion in 9% (100% increase), with 100% deemed correct. CONCLUSIONS: Additional PET information helped to appropriately determine level of suspicion in multiple anatomic sites for otherwise equivocal findings on MRI alone. Although requiring larger studies, findings suggest a possible role for simultaneous PET/MRI to assist bladder cancer management.
PMCID:5538348
PMID: 27775939
ISSN: 1536-0229
CID: 2288602

Ganglion Cyst on 131I Whole-Body Scintigraphy

Khasgiwala, Anunita; Friedman, Kent P; Ghesani, Munir; Raad, Roy A
Interpretation of iodine I whole-body scintigraphy can be challenging, as there are many nonpathologic findings that may present with increased radiotracer uptake. Radiotracer uptake has been reported in the literature involving the salivary glands, thymus, renal cysts, skin contamination, and other benign etiologies. We present the case of an incidental right wrist ganglion cyst demonstrating persistent increased uptake on I whole-body scintigraphy.
PMID: 27775934
ISSN: 1536-0229
CID: 2288592

VISUAL VIGNETTE

Blum, Manfred; Agrawal, Nidhi; Friedman, Kent
PMID: 27295012
ISSN: 1530-891x
CID: 2144992

Comparison of white matter microstructure based on cerebral amyloid deposition in healthy aging and mild cognitive impairment: A multimodal PET/MR study [Meeting Abstract]

Dong, J W; Jelescu, I O; Ades-Aron, B; Novikov, D; Friedman, K; Ding, Y -S; Galvin, J E; Shepherd, T; Fieremans, E
Besides amyloid deposition, white matter (WM) changes are involved in the early pathogenesis of Alzheimer's Disease (AD), including inflammation, demyelination and axonal loss. Using simultaneous PET and MRI, we investigated differences in WM microstructural integrity, measured with Diffusion Kurtosis Imaging (DKI), with respect to beta amyloid (Aa) deposition as measured with18F-Florbetapir PET. DKI is a clinically feasible diffusion MRI method that extends beyond Diffusion Tensor Imaging and probes non-Gaussian diffusion properties of nervous tissue, and allows for quantifying the microstructural index for the axonal water fraction (AWF), a specific marker for axonal degeneration and demyelination. Methods: 34 subjects were scanned on a 3T integrated PET-MRI system (Siemens Biograph mMR, VB20). 18FFlorbetapir (9 mCi, Eli Lilly) was injected intravenously and a static 20-minute PET image was reconstructed starting at 40 min post-injection using a UTE-based attenuation map. An anatomical MP-RAGE was acquired for cortical and sub-cortical segmentation using Freesurfer. Hippocampal volume was normalized to the estimated total intracranial volume. The standardized uptake values (SUV) in 5 cortical regions known for pathological uptake of Florbetapir (anterior and posterior cingulate, medial orbito-frontal, parietal and temporal), normalized to the cerebellum, yielded mean cortical relative SUV (SUVr). DKI provided parametric maps for the radial diffusivity (RD), radial kurtosis (RK), and the AWF. Using a lower and higher mean SUVr threshold of 1.0 and 1.1, age- and gender-controlled subjects were categorized into Aa negative (Aa-) (n = 13, 5 females, age = 69.8 +/- 5.1 yrs), Aa intermediate (Aai) (n = 13, 8 females, age = 68.9 +/- 4.8 yrs), or Aa positive (Aa+) (n = 8, 4 females, age = 70.6 +/- 5.3 yrs). Using Tract-Based Spatial Statistics (TBSS), skeletonized voxel-wise analysis was performed to identify areas of differences in the diffusion metrics while covarying for age. Separately, WM regions of interests (ROIs) were automatically segmented using atlas registration over which mean values were extracted. Analysis of covariance covarying for age was used to compare diffusion metrics and hippocampal volume among groups. Results: See figure. Results from both TBSS and ROI analysis demonstrated changes in the fornix and the genu of the corpus callosum. Between the Aa- and Aai groups, RD decreased while RK and AWF increased. Conversely, between the Aai and Aa+ groups, RD increased RD while RK and AWF decreased. A trend towards significantly higher hippocampal volume in the Aai group was observed. Conclusions: We report changes in RD, RK and AWF in opposite directions between Aa- and Aa~, and between Aa~ and Aa+, respectively, suggesting that different mechanisms affect the microstructure during different stages of AD. Early on, mechanisms including microglial activation may restrict diffusion, resulting in the observed decrease in RD and increase in RK and AWF. Later on, neurodegenerative effects such as demyelination and axonal loss may outweigh inflammation, resulting in the observed increase in RD and decrease in RK and AWF. [IMAGE PRESENTED]
EMBASE:613981126
ISSN: 1860-2002
CID: 2415672

Clinical PET-MR Imaging in Breast Cancer and Lung Cancer

Rice, Samuel L; Friedman, Kent P
Hybrid imaging systems have dramatically improved thoracic oncology patient care over the past 2 decades. PET-MR imaging systems have the potential to further improve imaging of thoracic neoplasms, resulting in diagnostic and therapeutic advantages compared with current MR imaging and PET-computed tomography systems. Increasing soft tissue contrast and lesion sensitivity, improved image registration, reduced radiation exposure, and improved patient convenience are immediate clinical advantages. Multiparametric quantitative imaging capabilities of PET-MR imaging have the potential to improve understanding of the molecular mechanisms of cancer and treatment effects, potentially guiding improvements in diagnosis and therapy.
PMCID:5538357
PMID: 27593245
ISSN: 1879-9809
CID: 2238022