Searched for: person:wisnit01
The role of affibody in aged mouse model of alzheimer's disease [Meeting Abstract]
Greenberg, J H; Lindberg, H; Orozco, J; Vama, B; Habbat, H; Loflom, J; Stahl, S; Mejouate, O; Wisniewski, T; Boutajangout, A
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that currently accounts for over 70% of cases of dementia in adults over 65 worldwide, and is the only cause of death among the top ten with no effective treatments. Clinically, AD is characterized by progressive deterioration in memory and other areas of cognitive function. Neuropathologically, the disease is characterized by extracellular aggregations of amyloid-B (AB) and intraneuronal neurofibrillary tangles (NFTS) composed of abnormally phosphorylated tau, causing progressive neuronal death. The aim of this study was to investigate whether the affibody ZSYM73-ABD (a portion of the active antibody molecule) can reverse AD pathology in an AD mouse model, without also causing significant neuroinflammation and/or microhemorrhage.
Method(s): APP/PS1 double transgenic mice were injected twice weekly with either ZSYM-ABD or a non-AB specific affibody, Ztaq2, as a control. Mice underwent behavioral testing and their brains were then sacrificed for immunohistochemistry.
Result(s): Semi-quantitative analysis of amyloid burden, performed using 6E10/4G8 antibodies, showed a statistically significant reduction in amyloid burden in the hippocampus, and a trend towards reduction in amyloid burden in the cortex. Inflammation was assessed using GFAP and Iba1(markers of gliosis) which showed a statistically significant reduction of GFAP in the cortex and in the hippocampus, and a slight reduction of microgliosis in ZSYM73-ABD affibody treated mice. Finally, mice treated with ZSYM73-ABD performed significantly better on a novel object recognition task than control mice, suggesting a correlation between the histological findings above and improvement in cognitive function.
Conclusion(s): In conclusion, this study demonstrates that passive immunization with an affibody molecule improves cognitive function and significantly decreases amyloid burden in the hippocampus of a transgenic mouse model of AD, without inducing inflammation. This has potential implications for treatment of AD in humans
EMBASE:633776658
ISSN: 1532-5415
CID: 4757572
Chiral Interface of Amyloid Beta (Aβ): Relevance to Protein Aging, Aggregation and Neurodegeneration
Dyakin, Victor V; Wisniewski, Thomas M; Lajtha, Abel
Biochirality is the subject of distinct branches of science, including biophysics, biochemistry, the stereochemistry of protein folding, neuroscience, brain functional laterality and bioinformatics. At the protein level, biochirality is closely associated with various post-translational modifications (PTMs) accompanied by the non-equilibrium phase transitions (PhTs NE). PTMs NE support the dynamic balance of the prevalent chirality of enzymes and their substrates. The stereoselective nature of most biochemical reactions is evident in the enzymatic (Enz) and spontaneous (Sp) PTMs (PTMs Enz and PTMs Sp) of proteins. Protein chirality, which embraces biophysics and biochemistry, is a subject of this review. In this broad field, we focus attention to the amyloid-beta (Aβ) peptide, known for its essential cellular functions and associations with neuropathology. The widely discussed amyloid cascade hypothesis (ACH) of Alzheimer's disease (AD) states that disease pathogenesis is initiated by the oligomerization and subsequent aggregation of the Aβ peptide into plaques. The racemization-induced aggregation of protein and RNA have been extensively studied in the search for the contribution of spontaneous stochastic stereo-specific mechanisms that are common for both kinds of biomolecules. The failure of numerous Aβ drug-targeting therapies requires the reconsolidation of the ACH with the concept of PTMs Sp. The progress in methods of chiral discrimination can help overcome previous limitations in the understanding of AD pathogenesis. The primary target of attention becomes the network of stereospecific PTMs that affect the aggregation of many pathogenic agents, including Aβ. Extensive recent experimental results describe the truncated, isomerized and racemized forms of Aβ and the interplay between enzymatic and PTMs Sp. Currently, accumulated data suggest that non-enzymatic PTMs Sp occur in parallel to an existing metabolic network of enzymatic pathways, meaning that the presence and activity of enzymes does not prevent non-enzymatic reactions from occurring. PTMs Sp impact the functions of many proteins and peptides, including Aβ. This is in logical agreement with the silently accepted racemization hypothesis of protein aggregation (RHPA). Therefore, the ACH of AD should be complemented by the concept of PTMs Sp and RHPA.
PMCID:8317441
PMID: 34327009
ISSN: 2073-8994
CID: 4951272
Neuropathologic Changes in Sudden Unexplained Death in Childhood
McGuone, Declan; Leitner, Dominique; William, Christopher; Faustin, Arline; Leelatian, Nalin; Reichard, Ross; Shepherd, Timothy M; Snuderl, Matija; Crandall, Laura; Wisniewski, Thomas; Devinsky, Orrin
Sudden unexplained death in childhood (SUDC) affects children >1-year-old whose cause of death remains unexplained following comprehensive case investigation and is often associated with hippocampal abnormalities. We prospectively performed systematic neuropathologic investigation in 20 SUDC cases, including (i) autopsy data and comprehensive ancillary testing, including molecular studies, (ii) ex vivo 3T MRI and extensive histologic brain samples, and (iii) blinded neuropathology review by 2 board-certified neuropathologists. There were 12 girls and 8 boys; median age at death was 33.3 months. Twelve had a history of febrile seizures, 85% died during apparent sleep and 80% in prone position. Molecular testing possibly explained 3 deaths and identified genetic mutations in TNNI3, RYR2, and multiple chromosomal aberrations. Hippocampal abnormalities most often affected the dentate gyrus (altered thickness, irregular configuration, and focal lack of granule cells), and had highest concordance between reviewers. Findings were identified with similar frequencies in cases with and without molecular findings. Number of seizures did not correlate with hippocampal findings. Hippocampal alterations were the most common finding on histological review but were also found in possibly explained deaths. The significance and specificity of hippocampal findings is unclear as they may result from seizures, contribute to seizure pathogenesis, or be an unrelated phenomenon.
PMID: 31995186
ISSN: 1554-6578
CID: 4294212
Antiviral therapy: Valacyclovir Treatment of Alzheimer's Disease (VALAD) Trial: protocol for a randomised, double-blind,placebo-controlled, treatment trial
Devanand, D P; Andrews, Howard; Kreisl, William C; Razlighi, Qolamreza; Gershon, Anne; Stern, Yaakov; Mintz, Akiva; Wisniewski, Thomas; Acosta, Edward; Pollina, Julianna; Katsikoumbas, Mariasofia; Bell, Karen L; Pelton, Gregory H; Deliyannides, Deborah; Prasad, K M; Huey, Edward D
INTRODUCTION/BACKGROUND:After infection, herpes simplex virus-1 (HSV1) becomes latent in the trigeminal ganglion and can enter the brain via retrograde axonal transport. Recurrent reactivation of HSV1 may lead to neurodegeneration and Alzheimer's disease (AD) pathology. HSV1 (oral herpes) and HSV2 (genital herpes) can trigger amyloid beta-protein (Aβ) aggregation and HSV1 DNA is common in amyloid plaques. Anti-HSV drugs reduce Aβ and phosphorylated tau accumulation in cell-culture models. Cognitive impairment is greater in patients with HSV seropositive, and antiviral drugs show robust efficacy against peripheral HSV infection. Recent studies of electronic health records databases demonstrate that HSV infections increase dementia risk, and that antiviral medication treatment reduces this risk. The generic antiviral drug valacyclovir was superior to placebo in improving memory in a schizophrenia pilot trial but has not been tested in AD. METHODS AND ANALYSIS/UNASSIGNED:F-MK-6240 PET imaging, to show less amyloid and tau accumulation, respectively. In the lumbar puncture subsample, cerebrospinal fluid acyclovir will be assayed to assess central nervous system valacyclovir penetration. ETHICS AND DISSEMINATION/UNASSIGNED:The trial is being overseen by the New York State Psychiatric Institute Institutional Review Board (protocol 7537), the National Institute on Ageing, and the Data Safety Monitoring Board. Written informed consent is obtained for all subjects. Results will be disseminated via publication, clinicaltrials.gov, media and conferences. TRIAL REGISTRATION NUMBER/BACKGROUND:ClinicalTrials.gov identifier (NCT03282916) Pre-results.
PMID: 32034019
ISSN: 2044-6055
CID: 4301602
APOE-amyloid interaction: Therapeutic targets
Wisniewski, Thomas; Drummond, Eleanor
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that is growing in prevalence globally. It is the only major cause of death without any effective pharmacological means to treat or slow progression. Inheritance of the ε4 allele of the Apolipoprotein (APO) E gene is the strongest genetic risk factor for late-onset AD. The interaction between APOE and amyloid β (Aβ) plays a key role in AD pathogenesis. The APOE-Aβ interaction regulates Aβ aggregation and clearance and therefore directly influences the development of amyloid plaques, congophilic amyloid angiopathy and subsequent tau related pathology. Relatively few AD therapeutic approaches have directly targeted the APOE-Aβ interaction thus far. Here we review the critical role of APOE in the pathogenesis of AD and some of the most promising therapeutic approaches that focus on the APOE-Aβ interaction.
PMID: 32027932
ISSN: 1095-953x
CID: 4301502
A Sensitive and Cost-Effective Chemiluminescence ELISA for Measurement of Amyloid-β 1-42 Peptide in Human Plasma
Mehta, Pankaj D; Patrick, Bruce A; Miller, David L; Coyle, Patricia K; Wisniewski, Thomas
BACKGROUND:Amyloid-β42 (Aβ42) is associated with plaque formation in the brain of patients with Alzheimer's disease (AD). Studies have suggested the potential utility of plasma Aβ42 levels in the diagnosis, and in longitudinal study of AD pathology. Conventional ELISAs are used to measure Aβ42 levels in plasma but are not sensitive enough to quantitate low levels. Although ultrasensitive assays like single molecule array or immunoprecipitation-mass spectrometry have been developed to quantitate plasma Aβ42 levels, the high cost of instruments and reagents limit their use. OBJECTIVE:We hypothesized that a sensitive and cost-effective chemiluminescence (CL) immunoassay could be developed to detect low Aβ42 levels in human plasma. METHODS:We developed a sandwich ELISA using high affinity rabbit monoclonal antibody specific to Aβ42. The sensitivity of the assay was increased using CL substrate to quantitate low levels of Aβ42 in plasma. We examined the levels in plasma from 13 AD, 25 Down syndrome (DS), and 50 elderly controls. RESULTS:The measurement range of the assay was 0.25 to 500 pg/ml. The limit of detection was 1 pg/ml. All AD, DS, and 45 of 50 control plasma showed measurable Aβ42 levels. CONCLUSION/CONCLUSIONS:This assay detects low levels of Aβ42 in plasma and does not need any expensive equipment or reagents. It offers a preferred alternative to ultrasensitive assays. Since the antibodies, peptide, and substrate are commercially available, the assay is well suited for academic or diagnostic laboratories, and has a potential for the diagnosis of AD or in clinical trials.
PMID: 33252086
ISSN: 1875-8908
CID: 4712362
Detection of Cerebrovascular Loss in the Normal Aging C57BL/6 Mouse Brain Using in vivo Contrast-Enhanced Magnetic Resonance Angiography
Hill, Lindsay K; Hoang, Dung Minh; Chiriboga, Luis A; Wisniewski, Thomas; Sadowski, Martin J; Wadghiri, Youssef Z
Microvascular rarefaction, or the decrease in vascular density, has been described in the cerebrovasculature of aging humans, rats, and, more recently, mice in the presence and absence of age-dependent diseases. Given the wide use of mice in modeling age-dependent human diseases of the cerebrovasculature, visualization, and quantification of the global murine cerebrovasculature is necessary for establishing the baseline changes that occur with aging. To provide in vivo whole-brain imaging of the cerebrovasculature in aging C57BL/6 mice longitudinally, contrast-enhanced magnetic resonance angiography (CE-MRA) was employed using a house-made gadolinium-bearing micellar blood pool agent. Enhancement in the vascular space permitted quantification of the detectable, or apparent, cerebral blood volume (aCBV), which was analyzed over 2 years of aging and compared to histological analysis of the cerebrovascular density. A significant loss in the aCBV was detected by CE-MRA over the aging period. Histological analysis via vessel-probing immunohistochemistry confirmed a significant loss in the cerebrovascular density over the same 2-year aging period, validating the CE-MRA findings. While these techniques use widely different methods of assessment and spatial resolutions, their comparable findings in detected vascular loss corroborate the growing body of literature describing vascular rarefaction aging. These findings suggest that such age-dependent changes can contribute to cerebrovascular and neurodegenerative diseases, which are modeled using wild-type and transgenic laboratory rodents.
PMCID:7606987
PMID: 33192479
ISSN: 1663-4365
CID: 4671302
Class C CpG Oligodeoxynucleotide Immunomodulatory Response in Aged Squirrel Monkey (Saimiri Boliviensis Boliviensis)
Nehete, Pramod N; Williams, Lawrence E; Chitta, Sriram; Nehete, Bharti P; Patel, Akash G; Ramani, Margish D; Wisniewski, Thomas; Scholtzova, Henrieta
One means of stimulating the mammalian innate immune system is via Toll-like receptor 9 (TLR9) being exposed to unmethylated cytosine-phosphate-guanine (CpG) DNA, also known as pathogen-associated molecular patterns (PAMPs) of microbial origin. Synthetic CpG oligodeoxynucleotides (ODNs) with defined CpG motifs possess broad immunostimulatory properties that make CpG ODNs suitable as therapeutic interventions in a variety of human disease conditions, including Alzheimer's disease (AD). Rodent models are often used to preclinically test the effectiveness of CpG ODN therapeutic agents for AD and other disorders. However, the translatability of findings in such models is limited due to the significant difference of the expression of TLR9 between primates and rodents. The squirrel monkey (SQM), a New World non-human primate (NHP), is known to be phylogenetically proximate to humans, and develops extensive age-dependent cerebral amyloid angiopathy (CAA), a key pathological feature of AD. Hence, this model is currently being used to test AD therapeutics. In the present study, we conducted the first examination of Class C CpG ODN's immunomodulatory role in elderly SQMs. We documented the effectiveness of CpG ODN to trigger an immune response in an aged cohort whose immune system is senescent. The specific immune response patterns detected here closely resembled CpG ODN-induced immunostimulatory patterns observed in prior human studies. Overall, our findings provide critical data regarding the immunomodulatory potential of CpG ODN in this NHP model, allowing for future translational studies of innate immunity stimulation via TLR9 agonists for diverse indications, including AD therapeutics.
PMCID:7063459
PMID: 32194391
ISSN: 1663-4365
CID: 4353072
Inner SPACE: 400-Micron Isotropic Resolution MRI of the Human Brain
Shepherd, Timothy M; Hoch, Michael J; Bruno, Mary; Faustin, Arline; Papaioannou, Antonios; Jones, Stephen E; Devinsky, Orrin; Wisniewski, Thomas
Objectives/UNASSIGNED:Clinically relevant neuroanatomy is challenging to teach, learn and remember since many functionally important structures are visualized best using histology stains from serial 2D planar sections of the brain. In clinical patients, the locations of specific structures then must be inferred from spatial position and surface anatomy. A 3D MRI dataset of neuroanatomy has several advantages including simultaneous multi-planar visualization in the same brain, direct end-user manipulation of the data and image contrast identical to clinical MRI. We created 3D MRI datasets of the postmortem brain with high spatial and contrast resolution for simultaneous multi-planar visualization of complex neuroanatomy. Materials and Methods/UNASSIGNED:; time = 7 h). Besides resolution, this sequence has multiple adjustments to improve contrast compared to a clinical protocol, including 93% reduced turbo factor and 77% reduced effective echo time. Results/UNASSIGNED:This MRI microscopy protocol provided excellent contrast resolution of small nuclei and internal myelinated pathways within the basal ganglia, thalamus, brainstem, and cerebellum. Contrast was sufficient to visualize the presence and variation of horizontal layers in the cerebral cortex. 3D isotropic resolution datasets facilitated simultaneous multi-planar visualization and efficient production of specific tailored oblique image orientations to improve understanding of complex neuroanatomy. Conclusion/UNASSIGNED:structure visualization.
PMCID:7103647
PMID: 32265669
ISSN: 1662-5129
CID: 4377342
Using Proteomics to Understand Alzheimer's Disease Pathogenesis
Chapter by: Wisniewski, Thomas; Drummond, Eleanor
in: Alzheimer’s Disease by Wisniewski, Thomas
Brisbane (AU) : Codon Publications, 2019
pp. -
ISBN:
CID: 4253732