Try a new search

Format these results:

Searched for:

person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01

Total Results:

1145


Maternal Choline Supplementation as a Potential Therapy for Down Syndrome: Assessment of Effects Throughout the Lifespan

Powers, Brian E; Velazquez, Ramon; Strawderman, Myla S; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J
Maternal choline supplementation (MCS) has emerged as a promising therapy to lessen the cognitive and affective dysfunction associated with Down syndrome (DS). Choline is an essential nutrient, especially important during pregnancy due to its wide-ranging ontogenetic roles. Using the Ts65Dn mouse model of DS, our group has demonstrated that supplementing the maternal diet with additional choline (4-5 × standard levels) during pregnancy and lactation improves spatial cognition, attention, and emotion regulation in the adult offspring. The behavioral benefits were associated with a rescue of septohippocampal circuit atrophy. These results have been replicated across a series of independent studies, although the magnitude of the cognitive benefit has varied. We hypothesized that this was due, at least in part, to differences in the age of the subjects at the time of testing. Here, we present new data that compares the effects of MCS on the attentional function of adult Ts65Dn offspring, which began testing at two different ages (6 vs. 12 months of age). These data replicate and extend the results of our previous reports, showing a clear pattern indicating that MCS has beneficial effects in Ts65Dn offspring throughout life, but that the magnitude of the benefit (relative to non-supplemented offspring) diminishes with aging, possibly because of the onset of Alzheimer's disease-like neuropathology. In light of growing evidence that increased maternal choline intake during pregnancy is beneficial to the cognitive and affective functioning of all offspring (e.g., neurotypical and DS), the addition of this nutrient to a prenatal vitamin regimen would be predicted to have population-wide benefits and provide early intervention for fetuses with DS, notably including babies born to mothers unaware that they are carrying a fetus with DS.
PMCID:8527982
PMID: 34690739
ISSN: 1663-4365
CID: 5042192

A method for quantification of vesicular compartments within cells using 3D reconstructed confocal z-stacks: Comparison of ImageJ and Imaris to count early endosomes within basal forebrain cholinergic neurons

Gautier, Megan K; Ginsberg, Stephen D
BACKGROUND:Phenotypic changes in vesicular compartments are an early pathological hallmark of many peripheral and central diseases. For example, accurate assessment of early endosome pathology is crucial to the study of Down syndrome (DS) and Alzheimer's disease (AD), as well as other neurological disorders with endosomal-lysosomal pathology. NEW METHOD/UNASSIGNED:We describe a method for quantification of immunolabeled early endosomes within transmitter-identified basal forebrain cholinergic neurons (BFCNs) using 3-dimensional (3D) reconstructed confocal z-stacks employing Imaris software. RESULTS:Quantification of 3D reconstructed z-stacks was performed using two different image analysis programs: ImageJ and Imaris. We found ImageJ consistently overcounted the number of early endosomes present within individual BFCNs. Difficulty separating densely packed early endosomes within defined BFCNs was observed in ImageJ compared to Imaris. COMPARISON WITH EXISTING METHODS/UNASSIGNED:Previous methods quantifying endosomal-lysosomal pathology relied on confocal microscopy images taken in a single plane of focus. Since early endosomes are distributed throughout the soma and neuronal processes of BFCNs, critical insight into the abnormal early endosome phenotype may be lost as a result of analyzing only a single image of the perikaryon. Rather than relying on a representative sampling, this protocol enables precise, direct quantification of all immunolabeled vesicles within a defined cell of interest. CONCLUSIONS:Imaris is an ideal program for accurately counting punctate vesicles in the context of dual label confocal microscopy. Superior image resolution and detailed algorithms offered by Imaris make precise and rigorous quantification of individual early endosomes dispersed throughout a BFCN in 3D space readily achievable.
PMID: 33338543
ISSN: 1872-678x
CID: 4770892

Endosomal Dysfunction Induced by Directly Overactivating Rab5 Recapitulates Prodromal and Neurodegenerative Features of Alzheimer's Disease

Pensalfini, Anna; Kim, Seonil; Subbanna, Shivakumar; Bleiwas, Cynthia; Goulbourne, Chris N; Stavrides, Philip H; Jiang, Ying; Lee, Ju-Hyun; Darji, Sandipkumar; Pawlik, Monika; Huo, Chunfeng; Peddy, James; Berg, Martin J; Smiley, John F; Basavarajappa, Balapal S; Nixon, Ralph A
Neuronal endosomal dysfunction, the earliest known pathobiology specific to Alzheimer's disease (AD), is mediated by the aberrant activation of Rab5 triggered by APP-β secretase cleaved C-terminal fragment (APP-βCTF). To distinguish pathophysiological consequences specific to overactivated Rab5 itself, we activate Rab5 independently from APP-βCTF in the PA-Rab5 mouse model. We report that Rab5 overactivation alone recapitulates diverse prodromal and degenerative features of AD. Modest neuron-specific transgenic Rab5 expression inducing hyperactivation of Rab5 comparable to that in AD brain reproduces AD-related Rab5-endosomal enlargement and mistrafficking, hippocampal synaptic plasticity deficits via accelerated AMPAR endocytosis and dendritic spine loss, and tau hyperphosphorylation via activated glycogen synthase kinase-3β. Importantly, Rab5-mediated endosomal dysfunction induces progressive cholinergic neurodegeneration and impairs hippocampal-dependent memory. Aberrant neuronal Rab5-endosome signaling, therefore, drives a pathogenic cascade distinct from β-amyloid-related neurotoxicity, which includes prodromal and neurodegenerative features of AD, and suggests Rab5 overactivation as a potential therapeutic target.
PMID: 33238112
ISSN: 2211-1247
CID: 4680792

Expression profiling of precuneus layer III cathepsin D-immunopositive pyramidal neurons in mild cognitive impairment and Alzheimer's disease: Evidence for neuronal signaling vulnerability

He, Bin; Perez, Sylvia E; Lee, Sang Han; Ginsberg, Stephen D; Malek-Ahmadi, Michael; Mufson, Elliott J
The precuneus (PreC; Brodmann area 7), a key hub within the default mode network (DMN) displays amyloid and tau-containing neurofibrillary tangle (NFT) pathology during the onset of Alzheimer's disease (AD). PreC layer III projection neurons contain lysosomal hydrolase cathepsin D (CatD), 14)a marker of neurons vulnerable to NFT pathology. Here we applied single population laser capture microdissection coupled with custom-designed microarray profiling to determine the genetic signature of PreC CatD-positive-layer III neurons accrued from postmortem tissue obtained from the Rush Religious Orders Study (RROS) cases with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) and AD. Expression profiling revealed significant differential expression of key transcripts in MCI and AD compared to NCI that underlie signaling defects, including dysregulation of genes within the endosomal-lysosomal and autophagy pathways, cytoskeletal elements, AD-related genes, ionotropic and metabotropic glutamate receptors, cholinergic enzyme and receptors, markers of monoamine neurotransmission as well as steroid-related transcripts. Pervasive defects in both MCI and AD were found in select transcripts within these key gene ontology categories, underscoring the vulnerability of these corticocortical neurons during the onset and progression of dementia. Select PreC dysregulated genes detected via custom-designed microarray analysis were validated using qPCR. In summary, expression profiling of CatD positive PreC layer III neurons revealed significant dysregulation of a mosaic of genes in MCI and AD that were not previously appreciated in terms of their indication of systems-wide signaling defects in a key hub of the DMN. This article is protected by copyright. All rights reserved.
PMID: 32323319
ISSN: 1096-9861
CID: 4402282

Cystatin C Plays a Sex-Dependent Detrimental Role in Experimental Autoimmune Encephalomyelitis

Hoghooghi, Vahid; Palmer, Alexandra L; Frederick, Ariana; Jiang, Yulan; Merkens, Jessica E; Balakrishnan, Anjali; Finlay, Trisha M; Grubb, Anders; Levy, Efrat; Gordon, Paul; Jirik, Frank R; Nguyen, Minh Dang; Schuurmans, Carol; Visser, Frank; Dunn, Shannon E; Ousman, Shalina S
The cysteine protease inhibitor Cystatin C (CST3) is highly expressed in the brains of multiple sclerosis (MS) patients and C57BL/6J mice with experimental autoimmune encephalomyelitis (EAE; a model of MS), but its roles in the diseases are unknown. Here, we show that CST3 plays a detrimental function in myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-induced EAE but only in female animals. Female Cst3 null mice display significantly lower clinical signs of disease compared to wild-type (WT) littermates. This difference is associated with reduced interleukin-6 production and lower expression of key proteins (CD80, CD86, major histocompatibility complex [MHC] II, LC3A/B) involved in antigen processing, presentation, and co-stimulation in antigen-presenting cells (APCs). In contrast, male WT and Cst3-/- mice and cells show no differences in EAE signs or APC function. Further, the sex-dependent effect of CST3 in EAE is sensitive to gonadal hormones. Altogether, we have shown that CST3 has a sex-dependent role in MOG35-55-induced EAE.
PMID: 33027652
ISSN: 2211-1247
CID: 4637132

Endocrine Insights into the Pathophysiology of Autism Spectrum Disorder

Wilson, Hayley A; Creighton, Carolyn; Scharfman, Helen; Choleris, Elena; MacLusky, Neil J
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders that affects males more frequently than females. Numerous genetic and environmental risk factors have been suggested to contribute to the development of ASD. However, no one factor can adequately explain either the frequency of the disorder or the male bias in its prevalence. Gonadal, thyroid, and glucocorticoid hormones all contribute to normal development of the brain, hence perturbations in either their patterns of secretion or their actions may constitute risk factors for ASD. Environmental factors may contribute to ASD etiology by influencing the development of neuroendocrine and neuroimmune systems during early life. Emerging evidence suggests that the placenta may be particularly important as a mediator of the actions of environmental and endocrine risk factors on the developing brain, with the male being particularly sensitive to these effects. Understanding how various risk factors integrate to influence neural development may facilitate a clearer understanding of the etiology of ASD.
PMID: 32912048
ISSN: 1089-4098
CID: 4598212

Extracellular vesicles: where the amyloid precursor protein carboxyl-terminal fragments accumulate and amyloid-β oligomerizes

Pérez-González, Rocío; Kim, Yohan; Miller, Chelsea; Pacheco-Quinto, Javier; Eckman, Elizabeth A; Levy, Efrat
Pleiotropic roles are proposed for brain extracellular vesicles (EVs) in the development of Alzheimer's disease (AD). Our previous studies have suggested a beneficial role for EVs in AD, where the endosomal system in vulnerable neurons is compromised, contributing to the removal of accumulated material from neurons. However, the involvement of EVs in propagating AD amyloidosis throughout the brain has been considered because the amyloid-β precursor protein (APP), APP metabolites, and key APP cleaving enzymes were identified in association with EVs. Here, we undertook to determine whether the secretase machinery is actively processing APP in EVs isolated from the brains of wild-type and APP overexpressing Tg2576 mice. We found that full-length APP is cleaved in EVs incubated in the absence of cells. The resulting metabolites, both α- and β-APP carboxyl-terminal fragments and APP intracellular domain accumulate in EVs over time and amyloid-β dimerizes. Thus, EVs contribute to the removal from neurons and transport of APP-derived neurotoxic peptides. While this is potentially a venue for propagation of the pathology throughout the brain, it may contribute to efficient removal of neurotoxic peptides from the brain.
PMID: 32772431
ISSN: 1530-6860
CID: 4560212

Neurofilaments: neurobiological foundations for biomarker applications

Gafson, Arie R; Barthélemy, Nicolas R; Bomont, Pascale; Carare, Roxana O; Durham, Heather D; Julien, Jean-Pierre; Kuhle, Jens; Leppert, David; Nixon, Ralph A; Weller, Roy O; Zetterberg, Henrik; Matthews, Paul M
Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.
PMID: 32408345
ISSN: 1460-2156
CID: 4438212

Translational neurophysiological biomarkers of N-methyl-d-aspartate receptor dysfunction in serine racemase knockout mice

Balla, Andrea; Ginsberg, Stephen D; Abbas, Atheir I; Sershen, Henry; Javitt, Daniel C
Alterations in glutamatergic function are well established in schizophrenia (Sz), but new treatment development is hampered by the lack of translational pathophysiological and target engagement biomarkers as well as by the lack of animal models that recapitulate the pathophysiological features of Sz. Here, we evaluated the rodent auditory steady state response (ASSR) and long-latency auditory event-related potential (aERP) as potential translational markers. These biomarkers were assessed for their sensitivity to both the N-methyl-d-aspartate receptor (NMDAR) antagonist phencyclidine (PCP) and to knock-out (KO) of Serine Racemase (SR), which is known to lead to Sz-like alterations in function of parvalbumin (PV)-type cortical interneurons. PCP led to significant increases of ASSR that were further increased in SRKO-/-, consistent with PV interneuron effects. Similar effects were observed in mice with selective NMDAR KO on PV interneurons. By contrast, PCP but not SRKO reduced the amplitude of the rodent analog of the human N1 potential. Overall, these findings support use of rodent ASSR and long-latency aERP, along with previously described measures such as mismatch negativity (MMN), as translational biomarkers, and support SRKO mice as a potential rodent model for PV interneuron dysfunction in Sz.
PMCID:8301266
PMID: 34308374
ISSN: 2666-1446
CID: 4965432

The aging lysosome: An essential catalyst for late-onset neurodegenerative diseases

Nixon, Ralph A
Lysosomes figure prominently in theories of aging as the proteolytic system most responsible for eliminating growing burdens of damaged proteins and organelles in aging neurons and other long lived cells. Newer evidence shows that diverse experimental measures known to extend lifespan in invertebrate aging models share the property of boosting lysosomal clearance of substrates through the autophagy pathway. Maintaining an optimal level of lysosome acidification is particularly crucial for these anti-aging effects. The exceptional dependence of neurons on fully functional lysosomes is reflected by the phenotypes seen in congenital lysosomal storage disorders, which commonly present as severe neurodevelopmental or neurodegenerative conditions even though lysosomal deficits are systemic. Similar connections are now being appreciated between risk for late age-onset neurodegenerative disorders and primary lysosomal deficits. In diseases such as Alzheimer's and Parkinson's, as in aging alone, primary lysosome dysfunction due to acidification impairment is emerging as a frequent theme, supported by the growing list of familial neurodegenerative disorders that involve primary vATPase dysfunction. The additional cellular roles played by intraluminal pH in sensing nutrient and stress and modulating cellular signaling have further expanded the possible ways that lysosomal pH dysregulation in aging and disease can disrupt neuronal function. Here, we consider the impact of cellular aging on lysosomes and how these changes may create the tipping point for disease emergence in major late-age onset neurodegenerative disorders.
PMID: 32416272
ISSN: 1878-1454
CID: 4438412