Searched for: person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01
mTOR hyperactivation in Down Syndrome underlies deficits in autophagy induction, autophagosome formation, and mitophagy
Bordi, Matteo; Darji, Sandipkumar; Sato, Yutaka; Mellén, Marian; Berg, Martin J; Kumar, Asok; Jiang, Ying; Nixon, Ralph A
Down syndrome (DS), a complex genetic disorder caused by chromosome 21 trisomy, is associated with mitochondrial dysfunction leading to the accumulation of damaged mitochondria. Here we report that mitophagy, a form of selective autophagy activated to clear damaged mitochondria is deficient in primary human fibroblasts derived from individuals with DS leading to accumulation of damaged mitochondria with consequent increases in oxidative stress. We identified two molecular bases for this mitophagy deficiency: PINK1/PARKIN impairment and abnormal suppression of macroautophagy. First, strongly downregulated PARKIN and the mitophagic adaptor protein SQSTM1/p62 delays PINK1 activation to impair mitophagy induction after mitochondrial depolarization by CCCP or antimycin A plus oligomycin. Secondly, mTOR is strongly hyper-activated, which globally suppresses macroautophagy induction and the transcriptional expression of proteins critical for autophagosome formation such as ATG7, ATG3 and FOXO1. Notably, inhibition of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) using AZD8055 (AZD) restores autophagy flux, PARKIN/PINK initiation of mitophagy, and the clearance of damaged mitochondria by mitophagy. These results recommend mTORC1-mTORC2 inhibition as a promising candidate therapeutic strategy for Down Syndrome.
PMCID:6646359
PMID: 31332166
ISSN: 2041-4889
CID: 3987912
Lysosomal dysfunction in Down syndrome is APP-dependent and mediated by APP-βCTF (C99)
Ying, Jiang; Sato, Yutaka; Im, Eunju; Berg, Martin; Bordi, Matteo; Darji, SandipKumar; Kumar, Asok; Mohan, Panaiyur S; Bandyopadhyay, Urmi; Diaz, Antonio; Maria Cuervo, Ana; Nixon, Ralph A
Lysosomal failure underlies pathogenesis of numerous congenital neurodegenerative disorders and is an early and progressive feature of Alzheimer's disease (AD) pathogenesis. Here, we report that lysosomal dysfunction in Down Syndrome (Trisomy 21), a neurodevelopmental disorder and form of early onset AD, requires the extra gene copy of amyloid precursor protein (APP) and is specifically mediated by the beta cleaved carboxy terminal fragment of APP (APP-βCTF, C99). In primary fibroblasts from individuals with Down Syndrome (DS), lysosomal degradation of autophagic and endocytic substrates is selectively impaired causing them to accumulate in enlarged autolysosomes/lysosomes. Direct measurements of lysosomal pH uncovered a significant elevation (0.6 units) as a basis for slowed LC3 turnover and the inactivation of cathepsin D (CTSD) and other lysosomal hydrolases known to be unstable or less active when lysosomal pH is persistently elevated. Normalizing lysosome pH by delivering acidic nanoparticles to lysosomes ameliorated lysosomal deficits, while RNA sequencing analysis excluded a transcriptional contribution to hydrolase declines. Cortical neurons cultured from the Ts2 mouse model of DS exhibited lysosomal deficits similar to those in DS cells. Lowering APP expression with siRNA or BACE1 inhibition reversed cathepsin deficits in both fibroblasts and neurons. Deleting one BACE1 allele from adult Ts2 mice had similar rescue effects in vivo The modest elevation of endogenous APP-βCTF needed to disrupt lysosomal function in DS is relevant to sporadic AD where APP-βCTF, but not APP, is also elevated. Our results extend evidence that impaired lysosomal acidification drives progressive lysosomal failure in multiple forms of AD.SIGNIFICANCE STATEMENTDown Syndrome (trisomy 21) (DS) is a neurodevelopmental disorder invariably leading to early-onset Alzheimer's Disease (AD). We showed in cells from DS individuals and neurons of DS models that one extra copy of a normal amyloid precursor protein (APP) gene impairs lysosomal acidification, thereby depressing lysosomal hydrolytic activities and turnover of autophagic and endocytic substrates - processes vital to neuronal survival. These deficits, which were reversible by correcting lysosomal pH, are mediated by elevated levels of endogenous β-cleaved carboxy-terminal fragment of APP (APP-βCTF). Notably, similar endosomal-lysosomal pathobiology emerges early in sporadic AD, where neuronal APP-βCTF is also elevated, underscoring its importance as a therapeutic target and underscoring the functional and pathogenic interrelationships between the endosomal-lysosomal pathway and genes causing AD.
PMID: 31043483
ISSN: 1529-2401
CID: 3854812
Enhanced Generation of Intraluminal Vesicles in Neuronal Late Endosomes in the Brain of a Down Syndrome Mouse Model with Endosomal Dysfunction
D'Acunzo, Pasquale; Hargash, Tal; Pawlik, Monika; Goulbourne, Chris N; Pérez-González, Rocío; Levy, Efrat
Down syndrome (DS) is a human genetic disease caused by trisomy of chromosome 21 and characterized by early developmental brain abnormalities. Dysfunctional endosomal pathway in neurons is an early event of DS and Alzheimer's disease. Recently, we have demonstrated that exosome secretion is upregulated in human DS postmortem brains, in the brain of the trisomic mouse model Ts[Rb(12.1716)]2Cje (Ts2) and by DS fibroblasts as compared with disomic controls. High levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Partially blocking exosome secretion by DS fibroblasts exacerbated a pre-existing early endosomal pathology. We thus hypothesized that enhanced CD63 expression induces generation of intraluminal vesicles (ILVs) in late endosomes/multivesicular bodies (MVBs), increasing exosome release as an endogenous mechanism to mitigate endosomal abnormalities in DS. Herein, we show a high-resolution electron microscopy analysis of MVBs in neurons of the frontal cortex of 12-month-old Ts2 mice and littermate diploid controls. Our quantitative analysis revealed that Ts2 MVBs are larger, more abundant, and contain a higher number of ILVs per neuron compared to controls. These findings were further corroborated biochemically by Western blot analysis of purified endosomal fractions showing higher levels of ILVs proteins in the same fractions containing endosomal markers in the brain of Ts2 mice compared to controls. These data suggest that upregulation of ILVs production may be a key homeostatic mechanism to alleviate endosomal dysregulation via the endosomal-exosomal pathway. This article is protected by copyright. All rights reserved.
PMID: 31278881
ISSN: 1932-846x
CID: 3968442
Maternal choline supplementation alters basal forebrain cholinergic neuron gene expression in the Ts65Dn mouse model of Down syndrome
Kelley, Christy M; Ginsberg, Stephen D; Alldred, Melissa J; Strupp, Barbara J; Mufson, Elliott J
Down syndrome (DS), trisomy 21, is marked by intellectual disability and a premature aging profile including degeneration of the basal forebrain cholinergic neuron (BFCN) projection system, similar to what is seen in Alzheimer's disease (AD). Although data indicate that perinatal maternal choline supplementation (MCS) alters the structure and function of these neurons in the Ts65Dn mouse model of DS and AD (Ts), how MCS affects the molecular profile of vulnerable BFCNs is unknown. We investigated the genetic signature of BFCNs obtained from Ts and disomic (2N) offspring of Ts65Dn dams maintained on a MCS diet (Ts+, 2N+) or a choline-normal diet (ND) from mating until weaning, then maintained on ND until 4.4-7.5 months of age. Brains were then collected and prepared for choline acetyltransferase (ChAT) immunohistochemistry and laser capture microdissection followed by RNA extraction and custom-designed microarray analysis. Findings revealed upregulation of select transcripts in classes of genes related to the cytoskeleton (Tubb4b), AD (Cav1), cell death (Bcl2), presynaptic (Syngr1), immediate early (Fosb, Arc), G protein signaling (Gabarap, Rgs10), and cholinergic neurotransmission (Chrnb3) in Ts compared to 2N mice, which were normalized with MCS. Moreover, significant downregulation was seen in select transcripts associated with the cytoskeleton (Dync1h1), intracellular signaling (Itpka, Gng3, Mlst8), and cell death (Ccng1) in Ts compared to 2N mice that were normalized with MCS. This study provides valuable insight into mechanisms of genotype-dependent differences and the effects of MCS at the molecular level within a key vulnerable cell type in DS and AD. This article is protected by copyright. All rights reserved.
PMID: 31120189
ISSN: 1932-846x
CID: 3920842
Early Seizure Activity Accelerates Depletion of Hippocampal Neural Stem Cells and Impairs Spatial Discrimination in an Alzheimer's Disease Model
Fu, Chia-Hsuan; Iascone, Daniel Maxim; Petrof, Iraklis; Hazra, Anupam; Zhang, Xiaohong; Pyfer, Mark S; Tosi, Umberto; Corbett, Brian F; Cai, Jingli; Lee, Jason; Park, Jin; Iacovitti, Lorraine; Scharfman, Helen E; Enikolopov, Grigori; Chin, Jeannie
Adult hippocampal neurogenesis has been reported to be decreased, increased, or not changed in Alzheimer's disease (AD) patients and related transgenic mouse models. These disparate findings may relate to differences in disease stage, or the presence of seizures, which are associated with AD and can stimulate neurogenesis. In this study, we investigate a transgenic mouse model of AD that exhibits seizures similarly to AD patients and find that neurogenesis is increased in early stages of disease, as spontaneous seizures became evident, but is decreased below control levels as seizures recur. Treatment with the antiseizure drug levetiracetam restores neurogenesis and improves performance in a neurogenesis-associated spatial discrimination task. Our results suggest that seizures stimulate, and later accelerate the depletion of, the hippocampal neural stem cell pool. These results have implications for AD as well as any disorder accompanied by recurrent seizures, such as epilepsy.
PMID: 31242408
ISSN: 2211-1247
CID: 3954162
The Dentate Gyrus and Temporal Lobe Epilepsy: An "Exciting" Era
Scharfman, Helen E
This review describes developments in epilepsy research during the last 3 to 4 decades that focused on the dentate gyrus (DG) and its role in temporal lobe epilepsy (TLE). The emphasis is on basic research in laboratory animals and is chronological, starting with hypotheses that attracted a lot of attention in the 1980s. Then experiments are described that addressed the questions, as well as new methods that often made the experiments possible. In addition, where new questions arose and the implications for clinical epilepsy are discussed.
PMID: 31232111
ISSN: 1535-7597
CID: 3955032
Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease
Alldred, Melissa J; Chao, Helen M; Lee, Sang Han; Beilin, Judah; Powers, Brian E; Petkova, Eva; Strupp, Barbara J; Ginsberg, Stephen D
Choline is critical for normative function of 3 major pathways in the brain, including acetylcholine biosynthesis, being a key mediator of epigenetic regulation, and serving as the primary substrate for the phosphatidylethanolamine N-methyltransferase pathway. Sufficient intake of dietary choline is critical for proper brain function and neurodevelopment. This is especially important for brain development during the perinatal period. Current dietary recommendations for choline intake were undertaken without critical evaluation of maternal choline levels. As such, recommended levels may be insufficient for both mother and fetus. Herein, we examined the impact of perinatal maternal choline supplementation (MCS) in a mouse model of Down syndrome and Alzheimer's disease, the Ts65Dn mouse relative to normal disomic littermates, to examine the effects on gene expression within adult offspring at ∼6 and 11 mo of age. We found MCS produces significant changes in offspring gene expression levels that supersede age-related and genotypic gene expression changes. Alterations due to MCS impact every gene ontology category queried, including GABAergic neurotransmission, the endosomal-lysosomal pathway and autophagy, and neurotrophins, highlighting the importance of proper choline intake during the perinatal period, especially when the fetus is known to have a neurodevelopmental disorder such as trisomy.-Alldred, M. J., Chao, H. M., Lee, S. H., Beilin, J., Powers, B. E., Petkova, E., Strupp, B. J., Ginsberg, S. D. Long-term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease.
PMID: 31180719
ISSN: 1530-6860
CID: 3929822
Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus
Luna, Victor M; Anacker, Christoph; Burghardt, Nesha S; Khandaker, Hameda; Andreu, Valentine; Millette, Amira; Leary, Paige; Ravenelle, Rebecca; Jimenez, Jessica C; Mastrodonato, Alessia; Denny, Christine A; Fenton, Andre A; Scharfman, Helen E; Hen, Rene
Young adult-born granule cells (abGCs) in the dentate gyrus (DG) have a profound impact on cognition and mood. However, it remains unclear how abGCs distinctively contribute to local DG information processing. We found that the actions of abGCs in the DG depend on the origin of incoming afferents. In response to lateral entorhinal cortex (LEC) inputs, abGCs exert monosynaptic inhibition of mature granule cells (mGCs) through group II metabotropic glutamate receptors. By contrast, in response to medial entorhinal cortex (MEC) inputs, abGCs directly excite mGCs through N-methyl-d-aspartate receptors. Thus, a critical function of abGCs may be to regulate the relative synaptic strengths of LEC-driven contextual information versus MEC-driven spatial information to shape distinct neural representations in the DG.
PMID: 31073064
ISSN: 1095-9203
CID: 3903282
High resolution approaches for the identification of amyloid fragments in brain
Ross, J A; Mathews, P M; Van Bockstaele, E J
BACKGROUND:.
 CONCLUSIONS: Using novel and highly specific antibodies in combination with electron microscopy may reveal important information about the timing of aberrant protein accumulation, as well as the progression of abnormalities in the endolysosomal systems that sort and clear these peptides.
PMID: 30367888
ISSN: 1872-678x
CID: 3386222
Selective decline of neurotrophin and neurotrophin receptor genes within CA1 pyramidal neurons and hippocampus proper: Correlation with cognitive performance and neuropathology in mild cognitive impairment and Alzheimer's disease
Ginsberg, Stephen D; Malek-Ahmadi, Michael H; Alldred, Melissa J; Che, Shaoli; Elarova, Irina; Chen, Yinghua; Jeanneteau, Freddy; Kranz, Thorsten M; Chao, Moses V; Counts, Scott E; Mufson, Elliott J
Hippocampal CA1 pyramidal neurons, a major component of the medial temporal lobe memory circuit, are selectively vulnerable during the progression of Alzheimer's disease (AD). The cellular mechanism(s) underlying degeneration of these neurons and the relationship to cognitive performance remains largely undefined. Here, we profiled neurotrophin and neurotrophin receptor gene expression within microdissected CA1 neurons along with regional hippocampal dissections from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or AD using laser capture microdissection (LCM), custom-designed microarray analysis, and qPCR of CA1 subregional dissections. Gene expression levels were correlated with cognitive test scores and AD neuropathology criteria. We found a significant downregulation of several neurotrophin genes (e.g., Gdnf, Ngfb, and Ntf4) in CA1 pyramidal neurons in MCI compared to NCI and AD subjects. In addition, the neurotrophin receptor transcripts TrkB and TrkC were decreased in MCI and AD compared to NCI. Regional hippocampal dissections also revealed select neurotrophic gene dysfunction providing evidence for vulnerability within the hippocampal proper during the progression of dementia. Downregulation of several neurotrophins of the NGF family and cognate neurotrophin receptor (TrkA, TrkB, and TrkC) genes correlated with antemortem cognitive measures including the Mini-Mental State Exam (MMSE), a composite global cognitive score (GCS), and Episodic, Semantic, and Working Memory, Perceptual Speed, and Visuospatial domains. Significant correlations were found between select neurotrophic expression downregulation and neuritic plaques (NPs) and neurofibrillary tangles (NFTs), but not diffuse plaques (DPs). The data suggest that dysfunction of neurotrophin signaling complexes have profound negative sequelae within vulnerable hippocampal cell types, which play a role in mnemonic and executive dysfunction during the progression of AD.
PMCID:5844851
PMID: 28888073
ISSN: 1098-1063
CID: 2688442