Try a new search

Format these results:

Searched for:

person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01

Total Results:

1130


Increased gyrification and aberrant adult neurogenesis of the dentate gyrus in adult rats

Magagna-Poveda, Alejandra; Moretto, Jillian N; Scharfman, Helen E
A remarkable example of maladaptive plasticity is the development of epilepsy after a brain insult or injury to a normal animal or human. A structure that is considered central to the development of this type of epilepsy is the dentate gyrus (DG), because it is normally a relatively inhibited structure and its quiescence is thought to reduce hippocampal seizure activity. This characteristic of the DG is also considered to be important for normal hippocampal-dependent cognitive functions. It has been suggested that the brain insults which cause epilepsy do so because they cause the DG to be more easily activated. One type of brain insult that is commonly used is induction of severe seizures (status epilepticus; SE) by systemic injection of a convulsant drug. Here we describe an alteration in the DG after this type of experimental SE that may contribute to chronic seizures that has not been described before: large folds or gyri that develop in the DG by 1 month after SE. Large gyri appeared to increase network excitability because epileptiform discharges recorded in hippocampal slices after SE were longer in duration when recorded inside gyri relative to locations outside gyri. Large gyri may also increase excitability because immature adult-born neurons accumulated at the base of gyri with time after SE, and previous studies have suggested that abnormalities in adult-born DG neurons promote seizures after SE. In summary, large gyri after SE are a common finding in adult rats, show increased excitability, and are associated with the development of an abnormal spatial distribution of adult-born neurons. Together these alterations may contribute to chronic seizures and associated cognitive comorbidities after SE.
PMCID:5909844
PMID: 28656372
ISSN: 1863-2661
CID: 2614702

Epilepsy as a Network Disorder (1): What can we learn from other network disorders such as autistic spectrum disorder and mood disorders?

Kanner, Andres M; Scharfman, Helen; Jette, Nathalie; Anagnostou, Evdokia; Bernard, Christophe; Camfield, Carol; Camfield, Peter; Legg, Karen; Dinstein, Ilan; Giacobe, Peter; Friedman, Alon; Pohlmann-Eden, Bernd
Epilepsy is a neurologic condition which often occurs with other neurologic and psychiatric disorders. The relation between epilepsy and these conditions is complex. Some population-based studies have identified a bidirectional relation, whereby not only patients with epilepsy are at increased risk of suffering from some of these neurologic and psychiatric disorders (migraine, stroke, dementia, autism, depression, anxiety disorders, Attention deficit hyperactivity disorder (ADHD), and psychosis), but also patients with these conditions are at increased risk of suffering from epilepsy. The existence of common pathogenic mechanisms has been postulated as a potential explanation of this phenomenon. To reassess the relationships between neurological and psychiatric conditions in general, and specifically autism, depression, Alzheimer's disease, schizophrenia, and epilepsy, a recent meeting brought together basic researchers and clinician scientists entitled "Epilepsy as a Network Disorder." This was the fourth in a series of conferences, the "Fourth International Halifax Conference and Retreat". This manuscript summarizes the proceedings on potential relations between Epilepsy on the one hand and autism and depression on the other. A companion manuscript provides a summary of the proceedings about the relation between epilepsy and Alzheimer's disease and schizophrenia, closed by the role of translational research in clarifying these relationships. The review of the topics in these two manuscripts will provide a better understanding of the mechanisms operant in some of the common neurologic and psychiatric comorbidities of epilepsy.
PMID: 29107450
ISSN: 1525-5069
CID: 2773222

Common data elements for preclinical epilepsy research: Standards for data collection and reporting. A TASK3 report of the AES/ILAE Translational Task Force of the ILAE

Harte-Hargrove, Lauren C; French, Jacqueline A; Pitkanen, Asla; Galanopoulou, Aristea S; Whittemore, Vicky; Scharfman, Helen E
The major objective of preclinical translational epilepsy research is to advance laboratory findings toward clinical application by testing potential treatments in animal models of seizures and epilepsy. Recently there has been a focus on the failure of preclinical discoveries to translate reliably, or even to be reproduced in different laboratories. One potential cause is a lack of standardization in preclinical data collection. The resulting difficulties in comparing data across studies have led to high cost and missed opportunity, which in turn impede clinical trials and advances in medical care. Preclinical epilepsy research has successfully brought numerous antiseizure treatments into the clinical practice, yet the unmet clinical needs have prompted the reconsideration of research strategies to optimize epilepsy therapy development. In the field of clinical epilepsy there have been successful steps to improve such problems, such as generation of common data elements (CDEs) and case report forms (CRFs and standards of data collection and reporting) by a team of leaders in the field. Therefore, the Translational Task Force was appointed by the International League Against Epilepsy (ILAE) and the American Epilepsy Society (AES), in partnership with the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institutes of Health (NIH) to define CDEs for animal epilepsy research studies and prepare guidelines for data collection and experimental procedures. If adopted, the preclinical CDEs could facilitate collaborative epilepsy research, comparisons of data across different laboratories, and promote rigor, transparency, and impact, particularly in therapy development.
PMCID:5679401
PMID: 29105074
ISSN: 1528-1167
CID: 2772132

Epigenetic suppression of hippocampal calbindin-D28k by DeltaFosB drives seizure-related cognitive deficits

You, Jason C; Muralidharan, Kavitha; Park, Jin W; Petrof, Iraklis; Pyfer, Mark S; Corbett, Brian F; LaFrancois, John J; Zheng, Yi; Zhang, Xiaohong; Mohila, Carrie A; Yoshor, Daniel; Rissman, Robert A; Nestler, Eric J; Scharfman, Helen E; Chin, Jeannie
The calcium-binding protein calbindin-D28k is critical for hippocampal function and cognition, but its expression is markedly decreased in various neurological disorders associated with epileptiform activity and seizures. In Alzheimer's disease (AD) and epilepsy, both of which are accompanied by recurrent seizures, the severity of cognitive deficits reflects the degree of calbindin reduction in the hippocampal dentate gyrus (DG). However, despite the importance of calbindin in both neuronal physiology and pathology, the regulatory mechanisms that control its expression in the hippocampus are poorly understood. Here we report an epigenetic mechanism through which seizures chronically suppress hippocampal calbindin expression and impair cognition. We demonstrate that DeltaFosB, a highly stable transcription factor, is induced in the hippocampus in mouse models of AD and seizures, in which it binds and triggers histone deacetylation at the promoter of the calbindin gene (Calb1) and downregulates Calb1 transcription. Notably, increasing DG calbindin levels, either by direct virus-mediated expression or inhibition of DeltaFosB signaling, improves spatial memory in a mouse model of AD. Moreover, levels of DeltaFosB and calbindin expression are inversely related in the DG of individuals with temporal lobe epilepsy (TLE) or AD and correlate with performance on the Mini-Mental State Examination (MMSE). We propose that chronic suppression of calbindin by DeltaFosB is one mechanism through which intermittent seizures drive persistent cognitive deficits in conditions accompanied by recurrent seizures.
PMCID:5747956
PMID: 29035369
ISSN: 1546-170x
CID: 2743212

Hilar granule cells of the mouse dentate gyrus: effects of age, septotemporal location, strain, and selective deletion of the proapoptotic gene BAX

Bermudez-Hernandez, Keria; Lu, Yi-Ling; Moretto, Jillian; Jain, Swati; LaFrancois, John J; Duffy, Aine M; Scharfman, Helen E
The dentate gyrus (DG) principal cells are glutamatergic granule cells (GCs), and they are located in a compact cell layer. However, GCs are also present in the adjacent hilar region, but have been described in only a few studies. Therefore, we used the transcription factor prospero homeobox 1 (Prox1) to quantify GCs at postnatal day (PND) 16, 30, and 60 in a common mouse strain, C57BL/6J mice. At PND16, there was a large population of Prox1-immunoreactive (ir) hilar cells, with more in the septal than temporal hippocampus. At PND30 and 60, the size of the hilar Prox1-ir cell population was reduced. Similar numbers of hilar Prox1-expressing cells were observed in PND30 and 60 Swiss Webster mice. Prox1 is usually considered to be a marker of postmitotic GCs. However, many Prox1-ir hilar cells, especially at PND16, were not double-labeled with NeuN, a marker typically found in mature neurons. Most hilar Prox1-positive cells at PND16 co-expressed doublecortin (DCX) and calretinin, markers of immature GCs. Double-labeling with a marker of actively dividing cells, Ki67, was not detected. These results suggest that, surprisingly, a large population of cells in the hilus at PND16 are immature GCs (Type 2b and Type 3 cells). We also asked whether hilar Prox1-ir cell numbers are modifiable. To examine this issue, we conditionally deleted the proapoptotic gene BAX in Nestin-expressing cells at a time when there are numerous immature GCs in the hilus, PND2-8. When these mice were examined at PND60, the numbers of Prox1-ir hilar cells were significantly increased compared to control mice. However, deletion of BAX did not appear to change the proportion that co-expressed NeuN, suggesting that the size of the hilar Prox1-expressing population is modifiable. However, deleting BAX, a major developmental disruption, does not appear to change the proportion that ultimately becomes neurons.
PMCID:5601016
PMID: 28314928
ISSN: 1863-2661
CID: 2499252

Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities

Gauthier, Sebastien A; Perez-Gonzalez, Rocio; Sharma, Ajay; Huang, Fang-Ke; Alldred, Melissa J; Pawlik, Monika; Kaur, Gurjinder; Ginsberg, Stephen D; Neubert, Thomas A; Levy, Efrat
A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.
PMCID:5576289
PMID: 28851452
ISSN: 2051-5960
CID: 2679042

Acute restraint stress decreases c-fos immunoreactivity in hilar mossy cells of the adult dentate gyrus

Moretto, Jillian N; Duffy, Aine M; Scharfman, Helen E
Although a great deal of information is available about the circuitry of the mossy cells (MCs) of the dentate gyrus (DG) hilus, their activity in vivo is not clear. The immediate early gene c-fos can be used to gain insight into the activity of MCs in vivo, because c-fos protein expression reflects increased neuronal activity. In prior work, it was identified that control rats that were perfusion-fixed after removal from their home cage exhibited c-fos immunoreactivity (ir) in the DG in a spatially stereotyped pattern: ventral MCs and dorsal granule cells (GCs) expressed c-fos protein (Duffy et al., Hippocampus 23:649-655, 2013). In this study, we hypothesized that restraint stress would alter c-fos-ir, because MCs express glucocorticoid type 2 receptors and the DG is considered to be involved in behaviors related to stress or anxiety. We show that acute restraint using a transparent nose cone for just 10 min led to reduced c-fos-ir in ventral MCs compared to control rats. In these comparisons, c-fos-ir was evaluated 30 min after the 10 min-long period of restraint, and if evaluation was later than 30 min c-fos-ir was no longer suppressed. Granule cells (GCs) also showed suppressed c-fos-ir after acute restraint, but it was different than MCs, because the suppression persisted for over 30 min after the restraint. We conclude that c-fos protein expression is rapidly and transiently reduced in ventral hilar MCs after a brief period of restraint, and suppressed longer in dorsal GCs.
PMCID:5505779
PMID: 28190104
ISSN: 1863-2661
CID: 2448882

Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease

Nixon, Ralph A
Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and beta-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote beta-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies beta-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-beta, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.
PMID: 28663518
ISSN: 1530-6860
CID: 2614202

Lysosomal dysfunction in the brain of a mouse model with intraneuronal accumulation of carboxyl terminal fragments of the amyloid precursor protein

Kaur, G; Pawlik, M; Gandy, S E; Ehrlich, M E; Smiley, J F; Levy, E
Recent data suggest that intraneuronal accumulation of metabolites of the amyloid-beta-precursor protein (APP) is neurotoxic. We observed that transgenic mice overexpressing in neurons a human APP gene harboring the APPE693Q (Dutch) mutation have intraneuronal lysosomal accumulation of APP carboxylterminal fragments (APP-CTFs) and oligomeric amyloid beta (oAbeta) but no histological evidence of amyloid deposition. Morphometric quantification using the lysosomal marker protein 2 (LAMP-2) immunolabeling showed higher neuronal lysosomal counts in brain of 12-months-old APPE693Q as compared with age-matched non-transgenic littermates, and western blots showed increased lysosomal proteins including LAMP-2, cathepsin D and LC3. At 24 months of age, these mice also exhibited an accumulation of alpha-synuclein in the brain, along with increased conversion of LC3-I to LC3-II, an autophagosomal/autolysosomal marker. In addition to lysosomal changes at 12 months of age, these mice developed cholinergic neuronal loss in the basal forebrain, GABAergic neuronal loss in the cortex, hippocampus and basal forebrain and gliosis and microgliosis in the hippocampus. These findings suggest a role for the intraneuronal accumulation of oAbeta and APP-CTFs and resultant lysosomal pathology at early stages of Alzheimer's disease-related pathology.Molecular Psychiatry advance online publication, 25 October 2016; doi:10.1038/mp.2016.189.
PMCID:5405008
PMID: 27777419
ISSN: 1476-5578
CID: 2288652

Neurofilaments and Neurofilament Proteins in Health and Disease

Yuan, Aidong; Rao, Mala V; Veeranna; Nixon, Ralph A
SUMMARYNeurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and alpha-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states.
PMID: 28373358
ISSN: 1943-0264
CID: 2519392