Searched for: person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01
Cyclodextrin has conflicting actions on autophagy flux in vivo in brains of normal and Alzheimer model mice
Yang, Dun-Sheng; Stavrides, Philip; Kumar, Asok; Jiang, Ying; Mohan, Panaiyur S; Ohno, Masuo; Dobrenis, Kostantin; Davidson, Cristin D; Saito, Mitsuo; Pawlik, Monika; Huo, Chunfeng; Walkley, Steven U; Nixon, Ralph A
2-hydroxypropyl-beta-cyclodextrin (CYCLO), a modifier of cholesterol efflux from cellular membrane and endo-lysosomal compartments, reduces lysosomal lipid accumulations and has therapeutic effects in animal models of Niemann-Pick disease type C and several other neurodegenerative states. Here, we investigated CYCLO effects on autophagy in wild-type mice and TgCRND8 mice - an Alzheimer's Disease (AD) model exhibiting beta-amyloidosis, neuronal autophagy deficits leading to protein and lipid accumulation within greatly enlarged autolysosomes. A 14-day intracerebroventricular administration of CYCLO to 8 month old TgCRND8 mice that exhibit moderately advanced neuropathology markedly diminished the sizes of enlarged autolysosomes and lowered their content of GM2 ganglioside and Abeta-immunoreactivity without detectably altering amyloid precursor protein processing or extracellular Abeta/beta-amyloid burden. We identified two major actions of CYCLO on autophagy underlying amelioration of lysosomal pathology. First, CYCLO stimulated lysosomal proteolytic activity by increasing cathepsin D activity, levels of cathepsins B and D and two proteins known to interact with cathepsin D, NPC1 and ABCA1. Second, CYCLO impeded autophagosome-lysosome fusion as evidenced by accumulation of LC3, SQSTM1/p62, and ubiquitinated substrates in an expanded population of autophagosomes in the absence of greater autophagy induction. By slowing substrate delivery to lysosomes, autophagosome maturational delay, as further confirmed by our in vitro studies, may relieve lysosomal stress due to accumulated substrates. These findings provide in vivo evidence for lysosomal enhancing properties of CYCLO, but caution that prolonged interference with cellular membrane fusion/autophagosome maturation could have unfavorable consequences, which might require careful optimization of dosage and dosing schedules.
PMCID:6075207
PMID: 28062666
ISSN: 1460-2083
CID: 2386972
Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments
Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A
While apolipoprotein (Apo)E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype.
PMCID:5263091
PMID: 28003161
ISSN: 1873-7544
CID: 2374382
Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease
Kelly, Sarah C; He, Bin; Perez, Sylvia E; Ginsberg, Stephen D; Mufson, Elliott J; Counts, Scott E
A major feature of Alzheimer's disease (AD) is the loss of noradrenergic locus coeruleus (LC) projection neurons that mediate attention, memory, and arousal. However, the extent to which the LC projection system degenerates during the initial stages of AD is still under investigation. To address this question, we performed tyrosine hydroxylase (TH) immunohistochemistry and unbiased stereology of noradrenergic LC neurons in tissue harvested postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI, a putative prodromal AD stage), or mild/moderate AD. Stereologic estimates of total LC neuron number revealed a 30% loss during the transition from NCI to aMCI, with an additional 25% loss of LC neurons in AD. Decreases in noradrenergic LC neuron number were significantly associated with worsening antemortem global cognitive function as well as poorer performance on neuropsychological tests of episodic memory, semantic memory, working memory, perceptual speed, and visuospatial ability. Reduced LC neuron numbers were also associated with increased postmortem neuropathology. To examine the cellular and molecular pathogenic processes underlying LC neurodegeneration in aMCI, we performed single population microarray analysis. These studies revealed significant reductions in select functional classes of mRNAs regulating mitochondrial respiration, redox homeostasis, and neuritic structural plasticity in neurons accessed from both aMCI and AD subjects compared to NCI. Specific gene expression levels within these functional classes were also associated with global cognitive deterioration and neuropathological burden. Taken together, these observations suggest that noradrenergic LC cellular and molecular pathology is a prominent feature of prodromal disease that contributes to cognitive dysfunction. Moreover, they lend support to a rational basis for targeting LC neuroprotection as a disease modifying strategy.
PMCID:5251221
PMID: 28109312
ISSN: 2051-5960
CID: 2418182
Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring
Powers, Brian E; Kelley, Christy M; Velazquez, Ramon; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J
The Ts65Dn mouse model of Down syndrome (DS) and Alzheimer's disease (AD) exhibits cognitive impairment and degeneration of basal forebrain cholinergic neurons (BFCNs). Our prior studies demonstrated that maternal choline supplementation (MCS) improves attention and spatial cognition in Ts65Dn offspring, normalizes hippocampal neurogenesis, and lessens BFCN degeneration in the medial septal nucleus (MSN). Here we determined whether (i) BFCN degeneration contributes to attentional dysfunction, and (ii) whether the attentional benefits of perinatal MCS are due to changes in BFCN morphology. Ts65Dn dams were fed either a choline-supplemented or standard diet during pregnancy and lactation. Ts65Dn and disomic (2N) control offspring were tested as adults (12-17months of age) on a series of operant attention tasks, followed by morphometric assessment of BFCNs. Ts65Dn mice demonstrated impaired learning and attention relative to 2N mice, and MCS significantly improved these functions in both genotypes. We also found, for the first time, that the number of BFCNs in the nucleus basalis of Meynert/substantia innominata (NMB/SI) was significantly increased in Ts65Dn mice relative to controls. In contrast, the number of BFCNs in the MSN was significantly decreased. Another novel finding was that the volume of BFCNs in both basal forebrain regions was significantly larger in Ts65Dn mice. MCS did not normalize any of these morphological abnormalities in the NBM/SI or MSN. Finally, correlational analysis revealed that attentional performance was inversely associated with BFCN volume, and positively associated with BFCN density. These results support the lifelong attentional benefits of MCS for Ts65Dn and 2N offspring and have profound implications for translation to human DS and pathology attenuation in AD.
PMCID:5177989
PMID: 27840230
ISSN: 1873-7544
CID: 2310852
Sex differences in hippocampal area CA3 pyramidal cells
Scharfman, Helen E; MacLusky, Neil J
Numerous studies have demonstrated differences between males and females in hippocampal structure, function, and plasticity. There also are many studies about the different predisposition of a males and females for disorders where the hippocampus plays an important role. Many of these reports focus on area CA1, but other subfields are also very important, and unlikely to be the same as area CA1 based on what is known. Here we review basic studies of male and female structure, function, and plasticity of area CA3 pyramidal cells of adult rats. The data suggest that the CA3 pyramidal cells of males and females are distinct in structure, function, and plasticity. These sex differences cannot be simply explained by the effects of circulating gonadal hormones. This view agrees with previous studies showing that there are substantial sex differences in the brain that cannot be normalized by removing the gonads and depleting peripheral gonadal hormones. Implications of these comparisons for understanding sex differences in hippocampal function and dysfunction are discussed. (c) 2016 Wiley Periodicals, Inc.
PMCID:5120657
PMID: 27870399
ISSN: 1097-4547
CID: 2314172
Expansion of mossy fibers and CA3 apical dendritic length accompanies the fall in dendritic spine density after gonadectomy in male, but not female, rats
Mendell, Ari L; Atwi, Sarah; Bailey, Craig D C; McCloskey, Dan; Scharfman, Helen E; MacLusky, Neil J
Androgen loss is an important clinical concern because of its cognitive and behavioral effects. Changes in androgen levels are also suspected to contribute to neurological disease. However, the available data on the effects of androgen deprivation in areas of the brain that are central to cognition, like the hippocampus, are mixed. In this study, morphological analysis of pyramidal cells was used to investigate if structural changes could potentially contribute to the mixed cognitive effects that have been observed after androgen loss in males. Male Sprague-Dawley rats were orchidectomized or sham-operated. Two months later, their brains were Golgi-impregnated for morphological analysis. Morphological endpoints were studied in areas CA3 and CA1, with comparisons to females either intact or 2 months after ovariectomy. CA3 pyramidal neurons of orchidectomized rats exhibited marked increases in apical dendritic arborization. There were increases in mossy fiber afferent density in area CA3, as well as robust enhancements to dendritic structure in area CA3 of orchidectomized males, but not in CA1. Remarkably, apical dendritic length of CA3 pyramidal cells increased, while spine density declined. By contrast, in females overall dendritic structure was minimally affected by ovariectomy, while dendritic spine density was greatly reduced. Sex differences and subfield-specific effects of gonadal hormone deprivation on the hippocampal circuitry may help explain the different behavioral effects reported in males and females after gonadectomy, or other conditions associated with declining gonadal hormone secretion.
PMCID:5337402
PMID: 27283589
ISSN: 1863-2661
CID: 2136592
A Method for Isolation of Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space
Perez-Gonzalez, Rocio; Gauthier, Sebastien A; Kumar, Asok; Saito, Mitsuo; Saito, Mariko; Levy, Efrat
Extracellular vesicles (EV), including exosomes, secreted vesicles of endocytic origin, and microvesicles derived from the plasma membrane, have been widely isolated and characterized from conditioned culture media and bodily fluids. The difficulty in isolating EV from tissues, however, has hindered their study in vivo. Here, we describe a novel method designed to isolate EV and characterize exosomes from the extracellular space of brain tissues. The purification of EV is achieved by gentle dissociation of the tissue to free the brain extracellular space, followed by sequential low-speed centrifugations, filtration, and ultracentrifugations. To further purify EV from other extracellular components, they are separated on a sucrose step gradient. Characterization of the sucrose step gradient fractions by electron microscopy demonstrates that this method yields pure EV preparations free of large vesicles, subcellular organelles, or debris. The level of EV secretion and content are determined by assays for acetylcholinesterase activity and total protein estimation, and exosomal identification and protein content are analyzed by Western blot and immuno-electron microscopy. Additionally, we present here a method to delipidate EV in order to improve the resolution of downstream electrophoretic analysis of EV proteins.
PMID: 27943212
ISSN: 1940-6029
CID: 2363332
Exosomes in the Diseased Brain: First Insights from In vivo Studies
Levy, Efrat
Extracellular vesicles (EVs) are nanoscale size vesicles secreted by cells and are important mediators of intercellular communication and genetic exchange. Exosomes, EVs generated in endosomal multivesicular bodies, have been the focus of numerous publications as they have emerged as clinically valuable markers of disease states. Exosomes have been mostly studied from conditioned culture media and body fluids, with the difficulty of isolating exosomes from tissues having delayed their study in vivo. The implementation of a method designed to isolate exosomes from tissues, however, has yielded the first insights into characteristics of exosomes in the brain. It has been observed that brain exosomes from murine models of neurodegenerative diseases and human postmortem brains tend to mirror the protein content of the cells of origin, and interestingly, they are enriched with toxic proteins. Whether this enrichment with neurotoxic proteins is beneficial by relieving neurons of accumulated toxic material or detrimental to the brain by propagating pathogenicity throughout the brain remains to be answered. Here is summarized the first group of studies describing exosomes isolated from brain, results that demonstrate that exosomes in vivo reflect complex multicellular pathogenic processes in neurodegenerative disorders and the brain's response to injury and damage.
PMCID:5362612
PMID: 28386213
ISSN: 1662-4548
CID: 2527652
Deletion of neurotrophin signaling through the glucocorticoid receptor pathway causes tau neuropathology [Meeting Abstract]
Arango-Lievano, M; Peguet, C; Catteau, M; Parmentier, M L; Wu, S; Chao, M V; Ginsberg, S D; Freddy, J
Aims Glucocorticoid resistance is a risk factor for Alzheimer's disease (AD). Molecular and cellular mechanisms of glucocorticoid resistance in the brain have remained unknown and are potential therapeutic targets. Phosphorylation of glucocorticoid receptors (GR) by brain-derived neurotrophic factor (BDNF) signaling integrates both pathways for remodeling synaptic structure and plasticity. OBJECTIVES: To test (i) the role of the BDNF-dependent pathway on glucocorticoid signaling in a mouse model of glucocorticoid resistance, (ii) its influence on dendritic spine loss and tau phosphorylation as risk factors for AD, and (iii) its relevance for human pathology. Method We manipulated (1) BDNF signaling using a TrkB mutant that can be inactivated chemically, (2) glucocorticoid signaling using a BDNF insensitive GR mutant, and (3) the expression of DUSP1, the MAPK-phosphatase downstream of BDNF and GR pathways in a mouse model of glucocorticoid resistance featuring impaired cortisol awaking response. Synaptic defects and Tau phosphorylation were analyzed post-mortem. DUSP1 expression in human brain was analyzed in correlation to AD diagnosis and cognitive impairment in two independent American cohorts (10 controls + 15 AD and 17 controls + 29 AD). Results Deletion of GR phosphorylation at BDNF-responding sites and downstream signaling via DUSP1 triggers tau phosphorylation and dendritic spine atrophy in mouse cortex. In human cortex, DUSP1 protein expression correlates with tau phosphorylation, synaptic defects and cognitive decline in subjects diagnosed with AD. Conclusion Our findings provide evidence for a causal role of BDNF-dependent GR signaling on tau neuropathology and indicate that DUSP1 is potential target of therapeutics
EMBASE:615511017
ISSN: 1660-2862
CID: 2553662
Altered acetylcholinesterase expression in Alzheimer's diseas e. contribution of the proline-rich membrane anchor processing by gamma secretase [Meeting Abstract]
Garcia-Ayllon, M S; Campanari, M L; Navarrete, F; Ginsberg, S D; Manzanares, J; Tsim, K; Saez-Valero, J
Aims Acetylcholinesterase (AChE) exists as different splicing variants with particular regional, cellular, and subcellular locations that may reflect differential physiological roles. So we aimed to study the expression of AChE variants in Alzheimer's disease (AD) brain. Method We have analyzed protein levels of AChE variants in postmortem cerebral cortex from AD patients by Western blot using specific anti-AChE antibodies. Levels of AChE transcripts were also analysed by qRT-PCR. Further, we investigated expression levels of the anchoring AChE subunit proline-rich membrane anchor (PRiMA-1), limiting factor for correct localization of cholinergic AChE at plasma membrane. In addition we analysed expression levels of AChE variants in cell cultures after PRiMA overexpression. Changes in AChE promoter were also evaluated by Luciferase assays. Results We found similar protein and mRNA levels of the major cholinergic "tailed"-variant (AChE-T) and the anchorage subunit PRiMA-1 in cortex from AD patients and non-demented controls. Interestingly, we observed an increment in protein and transcript levels of the non-cholinergic "readthrought" AChE (AChE-R) subunits in cortex of AD patients compared to controls. Moreover an increase in N-extended variants of AChE, which were assigned to N-AChE-R variants, was detected in AD cortex. We further observed that PRiMA 1 could regulate the expression of AChE-T variants without effect in AChE-R forms. Conclusion Our findings reveal previously unknown expression patterns of AChE variants in AD cortex likely reflecting specific roles and/or differential regulation for each variant in AD, which may have strong implications for the re-evaluation of AChE inhibitors as therapeutic agents in dementia
EMBASE:615512105
ISSN: 1660-2862
CID: 2553622