Try a new search

Format these results:

Searched for:

person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01

Total Results:

1130


Cognitive benefits of memantine in Alzheimer's 5XFAD model mice decline during advanced disease stages

Devi, Latha; Ohno, Masuo
Memantine, a noncompetitive NMDA receptor antagonist with neuroprotective properties, has been used for the treatment of Alzheimer's disease (AD). Administration of memantine to various transgenic AD mice has been reported to improve cognitive deficits, very often completely back to normal wild-type control levels. However, such great benefits of memantine in preclinical studies do not translate into clinical results of this drug, showing only marginal and transient efficacy in moderate to severe AD. To further address in vivo efficacy, we compared the effects of memantine at different disease stages in 5XFAD mice, one of the rapid-onset and most aggressive amyloid models. Specifically, we administered memantine once daily for 30days to 5XFAD mice, which showed moderate (6-7months of age) and robust (12-15months) beta-amyloid (Abeta) accumulation. Treatments with memantine (10mg/kg, i.p.) reversed memory impairments in the younger 5XFAD mice, as tested by the contextual fear conditioning and spontaneous alternation Y-maze paradigms. Memantine had no effects on soluble Abeta oligomer or total Abeta42 levels in 5XFAD mouse brains. In contrast, subchronic treatments with memantine showed no behavioral benefits in the older 5XFAD group, which exhibited more profound memory deficits concomitant with highly increased concentrations of Abeta as compared with those of the younger 5XFAD group. Since subchronic memantine at the higher dose (30mg/kg) impaired memory performances in wild-type controls, we further tested acute administration of 50mg/kg memantine, which was reported to enhance hippocampal adult neurogenesis and memory function. However, this treatment also failed to rescue memory deficits in 12-15-month-old 5XFAD mice. Collectively, our results demonstrate that cognitive benefits of memantine independent of Abeta reductions were no longer observed in the 5XFAD Alzheimer mouse model during advanced stages, which may be reflective of the limited efficacy of memantine in clinical settings.
PMID: 26948858
ISSN: 1873-5177
CID: 2024152

Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid-beta Alterations in a Monkey Model of Type 1 Diabetes

Morales-Corraliza, Jose; Wong, Harrison; Mazzella, Matthew J; Che, Shaoli; Lee, Sang Han; Petkova, Eva; Wagner, Janice D; Hemby, Scott E; Ginsberg, Stephen D; Mathews, Paul M
Epidemiological findings suggest that diabetic individuals are at a greater risk for developing Alzheimer's disease (AD). To examine the mechanisms by which diabetes mellitus (DM) may contribute to AD pathology in humans, we examined brain tissue from streptozotocin-treated type 1 diabetic adult male vervet monkeys receiving twice-daily exogenous insulin injections for 8-20 weeks. We found greater inhibitory phosphorylation of insulin receptor substrate 1 in each brain region examined of the diabetic monkeys when compared with controls, consistent with a pattern of brain insulin resistance that is similar to that reported in the human AD brain. Additionally, a widespread increase in phosphorylated tau was seen, including brain areas vulnerable in AD, as well as relatively spared structures, such as the cerebellum. An increase in active ERK1/2 was also detected, consistent with DM leading to changes in tau-kinase activity broadly within the brain. In contrast to these widespread changes, we found an increase in soluble amyloid-beta (Abeta) levels that was restricted to the temporal lobe, with the greatest increase seen in the hippocampus. Consistent with this localized Abeta increase, a hippocampus-restricted decrease in the protein and mRNA for the Abeta-degrading enzyme neprilysin (NEP) was found, whereas various Abeta-clearing and -degrading proteins were unchanged. Thus, we document multiple biochemical changes in the insulin-controlled DM monkey brain that can link DM with the risk of developing AD, including dysregulation of the insulin-signaling pathway, changes in tau phosphorylation, and a decrease in NEP expression in the hippocampus that is coupled with a localized increase in Abeta. SIGNIFICANCE STATEMENT: Given that diabetes mellitus (DM) appears to increase the risk of developing Alzheimer's disease (AD), understanding the mechanisms by which DM promotes AD is important. We report that DM in a nonhuman primate brain leads to changes in the levels or posttranslational processing of proteins central to AD pathobiology, including tau, amyloid-beta (Abeta), and the Abeta-degrading protease neprilysin. Additional evidence from this model suggests that alterations in brain insulin signaling occurred that are reminiscent of insulin signaling pathway changes seen in human AD. Thus, in anin vivomodel highly relevant to humans, we show multiple alterations in the brain resulting from DM that are mechanistically linked to AD risk.
PMCID:4829649
PMID: 27076423
ISSN: 1529-2401
CID: 2077582

Sleep EEG Changes in Preclinical Alzheimer Disease: A Pilot Study [Meeting Abstract]

Schueltz, Sonja; Varga, Andrew; Kam, Korey; Ducca, Emma; Wohlleber, Margaret; Lewis, Clifton; Jean-Louis, Girardin; Ayappa, Indu; Rapoport, David; Osorio, Ricardo; Scharfman, Helen
ISI:000411279003167
ISSN: 0028-3878
CID: 2962282

Calpastatin inhibits motor neuron death and increases survival of hSOD1 mice

Rao, Mala V; Campbell, Jabbar; Palaniappan, Arti; Kumar, Asok; Nixon, Ralph A
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with a poorly understood cause and no effective treatment. Given that calpains mediate neurodegeneration in other pathological states and are abnormally activated in ALS, we investigated the possible ameliorative effects of inhibiting calpain overactivation in hSOD1G93A transgenic (Tg) mice in vivo by neuron specific overexpression of calpastatin (CAST), the highly selective endogenous inhibitor of calpains. Our data indicate that overexpression of CAST in hSOD1G93A mice, which lowered calpain activation to levels comparable to WT mice, inhibited the abnormal breakdown of cytoskeletal proteins (spectrin, MAP2 and neurofilaments), and ameliorated motor axon loss. Disease onset in hSOD1G93A /CAST mice compared to littermate hSOD1G93A mice is delayed, which accounts for their longer time of survival. We also find that neuronal overexpression of CAST in hSOD1G93A transgenic mice inhibited production of putative neurotoxic caspase-cleaved tau and activation of Cdk5, which have been implicated in neurodegeneration in ALS models, and also reduced the formation of SOD1 oligomers. Our data indicate that inhibition of calpain with CAST is neuroprotective in an ALS mouse model
PMCID:4828294
PMID: 26756888
ISSN: 1471-4159
CID: 1912592

Neuronal ceroid lipofuscinosis with DNAJC5/CSPalpha mutation has PPT1 pathology and exhibit aberrant protein palmitoylation

Henderson, Michael X; Wirak, Gregory S; Zhang, Yong-Quan; Dai, Feng; Ginsberg, Stephen D; Dolzhanskaya, Natalia; Staropoli, John F; Nijssen, Peter C G; Lam, TuKiet T; Roth, Amy F; Davis, Nicholas G; Dawson, Glyn; Velinov, Milen; Chandra, Sreeganga S
Neuronal ceroid lipofuscinoses (NCL) are a group of inherited neurodegenerative disorders with lysosomal pathology (CLN1-14). Recently, mutations in the DNAJC5/CLN4 gene, which encodes the presynaptic co-chaperone CSPalpha were shown to cause autosomal-dominant NCL. Although 14 NCL genes have been identified, it is unknown if they act in common disease pathways. Here we show that two disease-associated proteins, CSPalpha and the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1/CLN1) are biochemically linked. We find that in DNAJC5/CLN4 patient brains, PPT1 is massively increased and mis-localized. Surprisingly, the specific enzymatic activity of PPT1 is dramatically reduced. Notably, we demonstrate that CSPalpha is depalmitoylated by PPT1 and hence its substrate. To determine the consequences of PPT1 accumulation, we compared the palmitomes from control and DNAJC5/CLN4 patient brains by quantitative proteomics. We discovered global changes in protein palmitoylation, mainly involving lysosomal and synaptic proteins. Our findings establish a functional link between two forms of NCL and serve as a springboard for investigations of NCL disease pathways.
PMCID:4791186
PMID: 26659577
ISSN: 1432-0533
CID: 1877772

Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF

Jiang, Ying; Rigoglioso, Andrew; Peterhoff, Corrinne M; Pawlik, Monika; Sato, Yutaka; Bleiwas, Cynthia; Stavrides, Philip; Smiley, John F; Ginsberg, Stephen D; Mathews, Paul M; Levy, Efrat; Nixon, Ralph A
beta-amyloid precursor protein (APP) and amyloid beta peptide (Abeta) are strongly implicated in Alzheimer's disease (AD) pathogenesis, although recent evidence has linked APP-betaCTF generated by BACE1 (beta-APP cleaving enzyme 1) to the development of endocytic abnormalities and cholinergic neurodegeneration in early AD. We show that partial BACE1 genetic reduction prevents these AD-related pathological features in the Ts2 mouse model of Down syndrome. Partially reducing BACE1 by deleting one BACE1 allele blocked development of age-related endosome enlargement in the medial septal nucleus, cerebral cortex, and hippocampus and loss of choline acetyltransferase (ChAT)-positive medial septal nucleus neurons. BACE1 reduction normalized APP-betaCTF elevation but did not alter Abeta40 and Abeta42 peptide levels in brain, supporting a critical role in vivo for APP-betaCTF in the development of these abnormalities. Although ameliorative effects of BACE1 inhibition on beta-amyloidosis and synaptic proteins levels have been previously noted in AD mouse models, our results highlight the additional potential value of BACE1 modulation in therapeutic targeting of endocytic dysfunction and cholinergic neurodegeneration in Down syndrome and AD.
PMCID:4773919
PMID: 26923405
ISSN: 1558-1497
CID: 2006252

Corruption of the dentate gyrus by "dominant" granule cells: Implications for dentate gyrus function in health and disease

Scharfman, Helen E; Myers, Catherine E
The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell 'backprojections' play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance - 'mossy fiber variance' - which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become 'dominant,' one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of 'dominant' GCs - subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network.
PMCID:4792754
PMID: 26391451
ISSN: 1095-9564
CID: 1786732

Observations on hippocampal mossy cells in mink (Neovison vison) with special reference to dendrites ascending to the granular and molecular layers

Sigurd, Jan; Blackstad, B; Osen, Kirsten K; Scharfman, Helen E; Storm-Mathisen, Jon; Blackstad, Theodor W; Leergaard, Trygve B
Detailed knowledge about the neural circuitry connecting the hippocampus and entorhinal cortex is necessary to understand how this system contributes to spatial navigation and episodic memory. The two principal cell types of the dentate gyrus, mossy cells and granule cells, are interconnected in a positive feedback loop, by which mossy cells can influence information passing from the entorhinal cortex via granule cells to hippocampal pyramidal cells. Mossy cells, like CA3 pyramidal cells, are characterized by thorny excrescences on their proximal dendrites, postsynaptic to giant terminals of granule cell axons. In addition to disynaptic input from the entorhinal cortex and perforant path via granule cells, mossy cells may also receive monosynaptic input from the perforant path via special dendrites ascending to the molecular layer. We here report qualitative and quantitative descriptions of Golgi stained hippocampal mossy cells in mink, based on light microscopic observations and three-dimensional reconstructions. The main focus is on the location, branching pattern, and length of dendrites, particularly those ascending to the granular and molecular layers. In mink, the latter dendrites are more numerous than in rat, but fewer than in primates. They form on average 12% (and up to 29%) of the total dendritic length, and appear to cover the terminal field of both the lateral and medial perforant paths. In further contrast to rat, the main mossy cell dendrites in mink branch more extensively with distal dendrites encroaching upon the CA3 field. The dendritic arbors extend both along and across the septotemporal axis of the dentate gyrus, not conforming to the lamellar pattern of the hippocampus. The findings suggest that the afferent input to the mossy cells becomes more complex in species closer to primates
PMCID:5331932
PMID: 26286893
ISSN: 1098-1063
CID: 1732242

Androgen Modulation of Hippocampal Structure and Function

Atwi, Sarah; McMahon, Dallan; Scharfman, Helen; MacLusky, Neil J
Androgens have profound effects on hippocampal structure and function, including induction of spines and spine synapses on the dendrites of CA1 pyramidal neurons, as well as alterations in long-term synaptic plasticity (LTP) and hippocampally dependent cognitive behaviors. How these effects occur remains largely unknown. Emerging evidence, however, suggests that one of the key elements in the response mechanism may be modulation of brain-derived neurotrophic factor (BDNF) in the mossy fiber (MF) system. In male rats, orchidectomy increases synaptic transmission and excitability in the MF pathway. Testosterone reverses these effects, suggesting that testosterone exerts tonic suppression on MF BDNF levels. These findings suggest that changes in hippocampal function resulting from declining androgen levels may reflect the outcome of responses mediated through normally balanced, but opposing, mechanisms: loss of androgen effects on the hippocampal circuitry may be compensated, at least in part, by an increase in BDNF-dependent MF plasticity.
PMCID:5002217
PMID: 25416742
ISSN: 1089-4098
CID: 1910932

Interictal spikes during sleep are an early defect in the Tg2576 mouse model of beta-amyloid neuropathology

Kam, Korey; Duffy, Aine M; Moretto, Jillian; LaFrancois, John J; Scharfman, Helen E
It has been suggested that neuronal hyperexcitability contributes to Alzheimer's disease (AD), so we asked how hyperexcitability develops in a common mouse model of beta-amyloid neuropathology - Tg2576 mice. Using video-EEG recordings, we found synchronized, large amplitude potentials resembling interictal spikes (IIS) in epilepsy at just 5 weeks of age, long before memory impairments or beta-amyloid deposition. Seizures were not detected, but they did occur later in life, suggesting that IIS are possibly the earliest stage of hyperexcitability. Interestingly, IIS primarily occurred during rapid-eye movement (REM) sleep, which is notable because REM is associated with increased cholinergic tone and cholinergic impairments are implicated in AD. Although previous studies suggest that cholinergic antagonists would worsen pathophysiology, the muscarinic antagonist atropine reduced IIS frequency. In addition, we found IIS occurred in APP51 mice which overexpress wild type (WT)-APP, although not as uniformly or as early in life as Tg2576 mice. Taken together with results from prior studies, the data suggest that surprising and multiple mechanisms contribute to hyperexcitability. The data also suggest that IIS may be a biomarker for early detection of AD.
PMCID:4730189
PMID: 26818394
ISSN: 2045-2322
CID: 1929152