Try a new search

Format these results:

Searched for:

person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01

Total Results:

1130


Endogenous murine Abeta increases amyloid deposition in APP23 but not in APPPS1 transgenic mice

Mahler, Jasmin; Morales-Corraliza, Jose; Stolz, Julia; Skodras, Angelos; Radde, Rebecca; Duma, Carmen C; Eisele, Yvonne S; Mazzella, Matthew J; Wong, Harrison; Klunk, William E; Nilsson, K Peter R; Staufenbiel, Matthias; Mathews, Paul M; Jucker, Mathias; Wegenast-Braun, Bettina M
Endogenous murine amyloid-beta peptide (Abeta) is expressed in most Abeta precursor protein (APP) transgenic mouse models of Alzheimer's disease but its contribution to beta-amyloidosis remains unclear. We demonstrate approximately 35% increased cerebral Abeta load in APP23 transgenic mice compared with age-matched APP23 mice on an App-null background. No such difference was found for the much faster Abeta-depositing APPPS1 transgenic mouse model between animals with or without the murine App gene. Nevertheless, both APP23 and APPPS1 mice codeposited murine Abeta, and immunoelectron microscopy revealed a tight association of murine Abeta with human Abeta fibrils. Deposition of murine Abeta was considerably less efficient compared with the deposition of human Abeta indicating a lower amyloidogenic potential of murine Abeta in vivo. The amyloid dyes Pittsburgh Compound-B and pentamer formyl thiophene acetic acid did not differentiate between amyloid deposits consisting of human Abeta and deposits of mixed human-murine Abeta. Our data demonstrate a differential effect of murine Abeta on human Abeta deposition in different APP transgenic mice. The mechanistically complex interaction of human and mouse Abeta may affect pathogenesis of the models and should be considered when models are used for translational preclinical studies.
PMCID:4457564
PMID: 25911278
ISSN: 1558-1497
CID: 1556832

Down syndrome and Alzheimer's disease: Common pathways, common goals

Hartley, Dean; Blumenthal, Thomas; Carrillo, Maria; DiPaolo, Gilbert; Esralew, Lucille; Gardiner, Katheleen; Granholm, Ann-Charlotte; Iqbal, Khalid; Krams, Michael; Lemere, Cynthia; Lott, Ira; Mobley, William; Ness, Seth; Nixon, Ralph; Potter, Huntington; Reeves, Roger; Sabbagh, Marwan; Silverman, Wayne; Tycko, Benjamin; Whitten, Michelle; Wisniewski, Thomas
In the United States, estimates indicate there are between 250,000 and 400,000 individuals with Down syndrome (DS), and nearly all will develop Alzheimer's disease (AD) pathology starting in their 30s. With the current lifespan being 55 to 60 years, approximately 70% will develop dementia, and if their life expectancy continues to increase, the number of individuals developing AD will concomitantly increase. Pathogenic and mechanistic links between DS and Alzheimer's prompted the Alzheimer's Association to partner with the Linda Crnic Institute for Down Syndrome and the Global Down Syndrome Foundation at a workshop of AD and DS experts to discuss similarities and differences, challenges, and future directions for this field. The workshop articulated a set of research priorities: (1) target identification and drug development, (2) clinical and pathological staging, (3) cognitive assessment and clinical trials, and (4) partnerships and collaborations with the ultimate goal to deliver effective disease-modifying treatments.
PMCID:4817997
PMID: 25510383
ISSN: 1552-5260
CID: 1477022

TrkB reduction exacerbates Alzheimer's disease-like signaling aberrations and memory deficits without affecting beta-amyloidosis in 5XFAD mice

Devi, L; Ohno, M
Accumulating evidence shows that brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) significantly decrease early in Alzheimer's disease (AD). However, it remains unclear whether BDNF/TrkB reductions may be mechanistically involved in the pathogenesis of AD. To address this question, we generated 5XFAD transgenic mice with heterozygous TrkB knockout (TrkB(+/-).5XFAD), and tested the effects of TrkB reduction on AD-like features in this mouse model during an incipient stage that shows only modest amyloid-beta (Abeta) pathology and retains normal mnemonic function. TrkB(+/-) reduction exacerbated memory declines in 5XFAD mice at 4-5 months of age as assessed by the hippocampus-dependent spontaneous alternation Y-maze task, while the memory performance was not affected in TrkB(+/-) mice. Meanwhile, TrkB(+/-).5XFAD mice were normal in nest building, a widely used measure for social behavior, suggesting the memory-specific aggravation of AD-associated behavioral impairments. We found no difference between TrkB(+/-).5XFAD and 5XFAD control mice in cerebral plaque loads, Abeta concentrations including total Abeta42 and soluble oligomers and beta-amyloidogenic processing of amyloid precursor protein. Interestingly, reductions in hippocampal expression of AMPA/NMDA glutamate receptor subunits as well as impaired signaling pathways downstream to TrkB such as CREB (cAMP response element-binding protein) and Akt/GSK-3beta (glycogen synthase kinase-3beta) were observed in TrkB(+/-).5XFAD mice but not in 5XFAD mice. Among these signaling aberrations, only Akt/GSK-3beta dysfunction occurred in TrkB(+/-) mice, while others were synergistic consequences between TrkB reduction and subthreshold levels of Abeta in TrkB(+/-).5XFAD mice. Collectively, our results indicate that reduced TrkB does not affect beta-amyloidosis but exacerbates the manifestation of hippocampal mnemonic and signaling dysfunctions in early AD.
PMCID:4471286
PMID: 25942043
ISSN: 2158-3188
CID: 1568762

Hippocampal endosomal, lysosomal, and autophagic dysregulation in mild cognitive impairment: correlation with abeta and tau pathology

Perez, Sylvia E; He, Bin; Nadeem, Muhammad; Wuu, Joanne; Ginsberg, Stephen D; Ikonomovic, Milos D; Mufson, Elliott J
Endosomal-lysosomal and autophagic dysregulation occurs in the hippocampus in prodromal Alzheimer disease (AD), but its relationship with beta-amyloid (Abeta) and tau pathology remains unclear. To investigate this issue, we performed immunoblot analysis of hippocampal homogenates from cases with an antemortem clinical diagnosis of no cognitive impairment, mild cognitive impairment (MCI), and AD. Western blot analysis revealed significant increases in the acid hydrolase cathepsin D and early endosome marker rabaptin5 in the MCI group compared with AD, whereas levels of phosphorylated mammalian target of rapamycin proteins (pmTOR), total mammalian target of rapamycin (mTOR), p62, traf6, and LilrB2 were comparable across clinical groups. Hippocampal Abeta1-40 and Abeta1-42 concentrations and AT8-immunopositive neurofibrillary tangle density were not significantly different across the clinical groups. Greater cathepsin D expression was associated with global cognitive score and episodic memory score but not with mini mental state examination or advanced neuropathology criteria. These results indicate that alterations in hippocampal endosomal-lysosomal proteins in MCI are independent of tau or Abeta pathology.
PMCID:4366294
PMID: 25756588
ISSN: 0022-3069
CID: 1506942

Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline

Cho, Kyung-Ok; Lybrand, Zane R; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G; Birnbaum, Shari G; Scharfman, Helen E; Eisch, Amelia J; Hsieh, Jenny
Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.
PMCID:4375780
PMID: 25808087
ISSN: 2041-1723
CID: 1514142

A combination Alzheimer's therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice

Devi, Latha; Ohno, Masuo
BACKGROUND: Accumulating evidence indicates that partial inhibition of beta-site APP-cleaving enzyme 1 (BACE1), which initiates amyloid-beta (Abeta) production, mitigates Alzheimer's disease (AD)-like pathologies and memory deficits in a battery of transgenic mouse models. However, our previous investigations suggest that therapeutic BACE1 suppression may be beneficial only if targeted on earlier stages of AD and encounter dramatic reductions in efficacy during disease progression. This study was designed to test the possibility that a combination approach, aimed at inhibiting BACE1 and boosting neprilysin (a major Abeta-degrading enzyme) activities, may be able to mechanistically overcome the limited efficacy of anti-Abeta therapy in advanced AD. RESULTS: After crossbreeding between BACE1 heterozygous knockout (BACE1(+/-)), neprilysin transgenic (NEP) and 5XFAD mice, we analyzed the resultant mice at 12 months of age when 5XFAD controls showed robust amyloid-beta (Abeta) accumulation and elevation of BACE1 expression (~2 folds). Although haploinsufficiency lowered BACE1 expression by ~50% in concordance with reduction in gene copy number, profound beta-amyloidosis, memory deficits and cholinergic neuron death were no longer rescued in BACE1(+/-) . 5XFAD mice concomitant with their persistently upregulated BACE1 (i.e., equivalent to wild-type control levels). Notably, neprilysin overexpression not only prevented Abeta accumulation but also suppressed the translation initiation factor eIF2alpha-associated elevation of BACE1 and lowered levels of the beta-secretase-cleaved C-terminal fragment of APP (C99) in NEP . 5XFAD mice. Interestingly, these markers for beta-amyloidogenesis in BACE1(+/-) . NEP . 5XFAD mice were further reduced to the levels reflecting a combination of single BACE1 allele ablation and the abolishment of translational BACE1 upregulation. However, since neprilysin overexpression was striking (~8-fold relative to wild-type controls), memory impairments, cholinergic neuronal loss and beta-amyloidosis were similarly prevented in NEP . 5XFAD and BACE1(+/-) . NEP . 5XFAD mice. CONCLUSIONS: Our findings indicate that robust overexpression of neprilysin is sufficient to ameliorate AD-like phenotypes in aged 5XFAD mice. We also found that Abeta-degrading effects of overexpressed neprilysin can block deleterious BACE1-elevating mechanisms that accelerate Abeta production, warranting further study to test whether interventions moderately activating neprilysin may be useful for boosting the limited efficacy of therapeutic BACE1 inhibition in treating AD with established Abeta pathology.
PMCID:4397831
PMID: 25884928
ISSN: 1756-6606
CID: 1533322

Neuroscience. Metabolic control of epilepsy [Comment]

Scharfman, Helen E
PMID: 25792315
ISSN: 0036-8075
CID: 1506442

Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity

Menzies, F M; Garcia-Arencibia, M; Imarisio, S; O'Sullivan, N C; Ricketts, T; Kent, B A; Rao, M V; Lam, W; Green-Thompson, Z W; Nixon, R A; Saksida, L M; Bussey, T J; O'Kane, C J; Rubinsztein, D C
Over recent years, accumulated evidence suggests that autophagy induction is protective in animal models of a number of neurodegenerative diseases. Intense research in the field has elucidated different pathways through which autophagy can be upregulated and it is important to establish how modulation of these pathways impacts upon disease progression in vivo and therefore which, if any, may have further therapeutic relevance. In addition, it is important to understand how alterations in these target pathways may affect normal physiology when constitutively modulated over a long time period, as would be required for treatment of neurodegenerative diseases. Here we evaluate the potential protective effect of downregulation of calpains. We demonstrate, in Drosophila, that calpain knockdown protects against the aggregation and toxicity of proteins, like mutant huntingtin, in an autophagy-dependent fashion. Furthermore, we demonstrate that, overexpression of the calpain inhibitor, calpastatin, increases autophagosome levels and is protective in a mouse model of Huntington's disease, improving motor signs and delaying the onset of tremors. Importantly, long-term inhibition of calpains did not result in any overt deleterious phenotypes in mice. Thus, calpain inhibition, or activation of autophagy pathways downstream of calpains, may be suitable therapeutic targets for diseases like Huntington's disease.
PMCID:4326573
PMID: 25257175
ISSN: 1350-9047
CID: 1462922

Decreased hippocampal neprilysin in a type 1 diabetes primate model leads to an increase in Abeta levels [Meeting Abstract]

Morales-Corraliza, J; Wong, H; Mazzella, M; Che, S; Wagner, J; Hemby, S; Ginsberg, S; Mathews, P
Objectives: Given that epidemiologic studies have shown that diabetes mellitus increases the risk of Alzheimer's disease (AD), our objective was to examine the mechanistic links between the two diseases in a non-human primate. Methods: Tissue from multiple brain regions of a vervet monkey model of streptozotocin-induced type 1 diabetes (n=10 control; n=7 diabetic) was examined by Western blot analysis, sandwich ELISA, and qPCR for biochemical changes in tau protein and Abeta peptide, as well as changes in key enzymes that contribute to their processing and posttranslational modification. Results: Regional brain analyses showed a global increase in tau phosphorylation in areas vulnerable to AD pathology as well as in spared structures such as the cerebellum. An examination of tau phosphatases and kinases showed a brain-wide increase in active ERK1/2. A diabetes-induced increase in Abeta levels, however, was specific to brain regions affected during the early stages of AD pathogenesis, with the greatest increase observed in the hippocampus. Examination of the amyloid precursor protein, its metabolites, and proteins involved in the clearance and degradation of brain Abeta indicated that a hippocampal-specific decrease in the Abeta-degrading enzyme neprilysin is a major contributor to this localized Abeta increase. Conclusions: Our study suggests protein changes in the brain that link diabetes to AD risk: decreased neprilysin expression leads to an increase in Abeta in the temporal lobe structures that are at the earliest risk in AD while increased ERK1/2 activity appears to contribute to a brain-wide increase in tau phosphorylation
EMBASE:71853016
ISSN: 1660-2854
CID: 1560432

Reduction of beta-amyloid and gamma-secretase by calorie restriction in female Tg2576 mice

Schafer, Marissa J; Alldred, Melissa J; Lee, Sang Han; Calhoun, Michael E; Petkova, Eva; Mathews, Paul M; Ginsberg, Stephen D
Research indicates that female risk of developing Alzheimer's disease (AD) is greater than that of males. Moderate reduction of calorie intake, known as calorie restriction (CR), reduces pathology in AD mouse models and is a potentially translatable prevention measure for individuals at-risk for AD, as well as an important tool for understanding how the brain endogenously attenuates age-related pathology. Whether sex influences the response to CR remains unknown. In this study, we assessed the effect of CR on beta-amyloid peptide (Abeta) pathology and hippocampal CA1 neuron specific gene expression in the Tg2576 mouse model of cerebral amyloidosis. Relative to ad libitum (AL) feeding, CR feeding significantly reduced hippocampal Abeta burden in 15-month-old female, but not age-matched male, Tg2576 mice. Sustained CR also significantly reduced expression of presenilin enhancer 2 (Psenen) and presenilin 1, components of the gamma-secretase complex, in Tg2576 females. These results indicate that long-term CR significantly reduces age-dependent female Tg2576 Abeta pathology, which is likely to involve CR-mediated reductions in gamma-secretase-dependent amyloid precursor protein (APP) metabolism.
PMCID:4346433
PMID: 25556162
ISSN: 0197-4580
CID: 1420202