Try a new search

Format these results:

Searched for:

person:wisnit01

Total Results:

562


Immunomodulation for prion and prion-related diseases

Wisniewski, Thomas; Goni, Fernando
Prion diseases are a unique category of illness, affecting both animals and humans, where the underlying pathogenesis is related to a conformational change of a normal self protein called cellular prion protein to a pathological and infectious conformer known as scrapie prion protein (PrP(Sc)). Currently, all prion diseases lack effective treatment and are universally fatal. Past experiences with bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease mainly in Europe, as well as the current epidemic of chronic wasting disease in North America, have highlighted the need to develop prophylactic and/or therapeutic approaches. In Alzheimer's disease that, like prion disease, is a conformational neurodegenerative disorder, both passive and active immunization has been shown to be highly effective in model animals at preventing disease and cognitive deficits, with emerging data from human trials suggesting that this approach is able to reduce amyloid-related pathology. However, any immunomodulatory approach aimed at a self-antigen has to finely balance an effective humoral immune response with potential autoimmune toxicity. The prion diseases most commonly acquired by infection typically have the alimentary tract as a portal of infectious agent entry. This makes mucosal immunization a potentially attractive method to produce a local immune response that partially or completely prevents prion entry across the gut barrier, while at the same time producing modulated systemic immunity that is unlikely to be associated with toxicity. Our results using an attenuated Salmonella vaccine strain expressing the prion protein showed that mucosal vaccination can protect against prion infection from a peripheral source, suggesting the feasibility of this approach. It is also possible to develop active and/or passive immunomodulatory approaches that more specifically target PrP(Sc) or target the shared pathological conformer found in numerous conformational disorders. Such approaches could have a significant impact on many of the common age-associated dementias
PMCID:3036951
PMID: 21105779
ISSN: 1744-8395
CID: 114848

Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an alzheimer's disease model mouse

Chung, Erika; Ji, Yong; Sun, Yanjie; Kascsak, Richard J; Kascsak, Regina B; Mehta, Pankaj D; Strittmatter, Stephen M; Wisniewski, Thomas
ABSTRACT: BACKGROUND: Alzheimer's Disease (AD) is the most common of the conformational neurodegenerative disorders characterized by the conversion of a normal biological protein into a beta-sheet-rich pathological isoform. In AD the normal soluble Abeta (sAbeta) forms oligomers and fibrils which assemble into neuritic plaques. The most toxic form of Abeta is thought to be oligomeric. A recent study reveals the cellular prion protein, PrPC, to be a receptor for Abeta oligomers. Abeta oligomers suppress LTP signal in murine hippocampal slices but activity remains when pretreated with the PrP monoclonal anti-PrP antibody, 6D11. We hypothesized that targeting of PrPC to prevent Abeta oligomer-related cognitive deficits is a potentially novel therapeutic approach. APP/PS1 transgenic mice aged 8 months were intraperitoneally (i.p.) injected with 1 mg 6D11 for 5 days/week for 2 weeks. Two wild-type control groups were given either the same 6D11 injections or vehicle solution. Additional groups of APP/PS1 transgenic mice were given either i.p. injections of vehicle solution or the same dose of mouse IgG over the same period. The mice were then subjected to cognitive behavioral testing using a radial arm maze, over a period of 10 days. At the conclusion of behavioral testing, animals were sacrificed and brain tissue was analyzed biochemically or immunohistochemically for the levels of amyloid plaques, PrPC, synaptophysin, Abeta40/42 and Abeta oligomers. RESULTS: Behavioral testing showed a marked decrease in errors in 6D11 treated APP/PS1 Tg mice compared with the non-6D11 treated Tg groups (p < 0.0001). 6D11 treated APP/PS1 Tg mice behaved the same as wild-type controls indicating a recovery in cognitive learning, even after this short term 6D11 treatment. Brain tissue analysis from both treated and vehicle treated APP/PS1 groups indicate no significant differences in amyloid plaque burden, Abeta40/42, PrPC or Abeta oligomer levels. 6D11 treated APP/PS1 Tg mice had significantly greater synaptophysin immunoreactivity in the dentate gyrus molecular layer of the hippocampus compared to vehicle treated APP/PS1 Tg mice (p < 0.05). CONCLUSIONS: Even short term treatment with monoclonal antibodies such as 6D11 or other compounds which block the binding of Abeta oligomers to PrPC can be used to treat cognitive deficits in aged AD transgenic mice
PMCID:2964735
PMID: 20946660
ISSN: 1471-2202
CID: 114049

Immunomodulation targeting abnormal protein conformation reduces pathology in a mouse model of Alzheimer's disease

Goni, Fernando; Prelli, Frances; Ji, Yong; Scholtzova, Henrieta; Yang, Jing; Sun, Yanjie; Liang, Feng-Xia; Kascsak, Regina; Kascsak, Richard; Mehta, Pankaj; Wisniewski, Thomas
Many neurodegenerative diseases are characterized by the conformational change of normal self-proteins into amyloidogenic, pathological conformers, which share structural properties such as high beta-sheet content and resistance to degradation. The most common is Alzheimer's disease (AD) where the normal soluble amyloid beta (sAbeta) peptide is converted into highly toxic oligomeric Abeta and fibrillar Abeta that deposits as neuritic plaques and congophilic angiopathy. Currently, there is no highly effective treatment for AD, but immunotherapy is emerging as a potential disease modifying intervention. A major problem with most active and passive immunization approaches for AD is that both the normal sAbeta and pathogenic forms are equally targeted with the potential of autoimmune inflammation. In order to avoid this pitfall, we have developed a novel immunomodulatory method that specifically targets the pathological conformations, by immunizing with polymerized British amyloidosis (pABri) related peptide which has no sequence homology to Abeta or other human proteins. We show that the pABri peptide through conformational mimicry induces a humoral immune response not only to the toxic Abeta in APP/PS1 AD transgenic mice but also to paired helical filaments as shown on AD human tissue samples. Treated APP/PS1 mice had a cognitive benefit compared to controls (p<0.0001), associated with a reduction in the amyloid burden (p = 0.0001) and Abeta40/42 levels, as well as reduced Abeta oligomer levels. This type of immunomodulation has the potential to be a universal beta-sheet disrupter, which could be useful for the prevention or treatment of a wide range of neurodegenerative diseases
PMCID:2954195
PMID: 20967130
ISSN: 1932-6203
CID: 114051

Murine models of Alzheimer's disease and their use in developing immunotherapies

Wisniewski, Thomas; Sigurdsson, Einar M
Alzheimer's disease (AD) is one of the categories of neurodegenerative diseases characterized by a conformational change of a normal protein into a pathological conformer with a high beta-sheet content that renders it resistant to degradation and neurotoxic. In AD, the normal soluble amyloid beta (sAbeta) peptide is converted into oligomeric/fibrillar Abeta. The oligomeric forms of Abeta are thought to be the most toxic, while fibrillar Abeta becomes deposited as amyloid plaques and congophilic angiopathy, which both serve as neuropathological markers of the disease. An additional important feature of AD is the accumulation of abnormally phosphorylated tau as soluble toxic oligomers and as neurofibrillary tangles. Many therapeutic interventions are under investigation to prevent and treat AD. The testing of these diverse approaches to ameliorate AD pathology has been made possible by the existence of numerous transgenic mouse models which each mirror specific aspects of AD pathology. None of the current murine models is a perfect match of the human disease. Perhaps the most exciting of the therapeutic approaches being developed is immunomodulation targeting the aggregating proteins, Abeta and tau. This type of AD therapy is currently being assessed in many transgenic mouse models, and promising findings have led to clinical trials. However, there is a discrepancy between results in murine models and ongoing clinical trials, which highlight the limitations of these models and also of our understanding of the underlying etiology and pathogenesis of AD. Because of these uncertainties, Tg models for AD are continuously being refined with the aim to better understand the disease and to enhance the predictive validity of potential treatments such as immunotherapies
PMCID:2930136
PMID: 20471477
ISSN: 0006-3002
CID: 112199

Dissolution of arterial platelet thrombi in vivo with a bifunctional platelet GPIIIa49-66 ligand which specifically targets the platelet thrombus

Zhang, Wei; Li, Yong-Sheng; Nardi, Michael A; Dang, Suying; Yang, Jing; Ji, Yong; Li, Zongdong; Karpatkin, Simon; Wisniewski, Thomas
Patients with HIV-1 immune-related thrombocytopenia have a unique antibody (Ab) against integrin GPIIIa49-66 capable of inducing oxidative platelet fragmentation via Ab activation of platelet nicotinamide adenine dinucleotide phosphate oxidase and 12-lipoxygenase releasing reactive oxygen species. Using a phage display single-chain antibody (scFv) library, we developed a novel human monoclonal scFv Ab against GPIIIa49-66 (named A11) capable of inducing fragmentation of activated platelets. In this study, we investigated the in vivo use of A11. We show that A11 does not induce significant thrombocytopenia or inhibit platelet function. A11 can prevent the cessation of carotid artery flow produced by induced artery injury and dissolve the induced thrombus 2 hours after cessation of blood flow. In addition, A11 can prevent, as well as ameliorate, murine middle cerebral artery stroke, without thrombocytopenia or brain hemorrhage. To further optimize the antithrombotic activity of A11, we produced a bifunctional A11-plasminogen first kringle agent (SLK), which homes to newly deposited fibrin strands within and surrounding the platelet thrombus, reducing effects on nonactivated circulating platelets. Indeed, SLK is able to completely reopen occluded carotid vessels 4 hours after cessation of blood flow, whereas A11 had no effect at 4 hours. Thus, a new antithrombotic agent was developed for platelet thrombus clearance
PMCID:2953838
PMID: 20525921
ISSN: 1528-0020
CID: 114164

MRI of Histological Tissue: Effect of Passive Gadolinium-Staining [Meeting Abstract]

Hoang, Dung Minh; Boutajangout, Allal; Bertrand, Anne; Pun, Susan; Fakri-Bouchet, Latifa; Sigurdsson, Einar; Wisniewski, Thomas; Zaim-Wadghiri, Youssef
ORIGINAL:0011718
ISSN: 1552-5279
CID: 2399892

A-beta derivative vaccination in old mouse lemur primates [Meeting Abstract]

Mestre-Frances, Nadine; Trouche, Stephanie G; Boutajangout, Allal; Asuni, Ayodeji; Arribat, Yoan; Rouland, Sylvie; Wisniewski, Thomas; Frangione, Blas; Maurice, Tangui; Sigurdsson, Einer M; Verdier, Jean Michel
ORIGINAL:0011716
ISSN: 1552-5279
CID: 2399872

The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes

Wegiel, Jerzy; Kuchna, Izabela; Nowicki, Krzysztof; Imaki, Humi; Wegiel, Jarek; Marchi, Elaine; Ma, Shuang Yong; Chauhan, Abha; Chauhan, Ved; Bobrowicz, Teresa Wierzba; de Leon, Mony; Louis, Leslie A Saint; Cohen, Ira L; London, Eric; Brown, W Ted; Wisniewski, Thomas
Autism is characterized by a broad spectrum of clinical manifestations including qualitative impairments in social interactions and communication, and repetitive and stereotyped patterns of behavior. Abnormal acceleration of brain growth in early childhood, signs of slower growth of neurons, and minicolumn developmental abnormalities suggest multiregional alterations. The aim of this study was to detect the patterns of focal qualitative developmental defects and to identify brain regions that are prone to developmental alterations in autism. Formalin-fixed brain hemispheres of 13 autistic (4-60 years of age) and 14 age-matched control subjects were embedded in celloidin and cut into 200-mum-thick coronal sections, which were stained with cresyl violet and used for neuropathological evaluation. Thickening of the subependymal cell layer in two brains and subependymal nodular dysplasia in one brain is indicative of active neurogenesis in two autistic children. Subcortical, periventricular, hippocampal and cerebellar heterotopias detected in the brains of four autistic subjects (31%) reflect abnormal neuronal migration. Multifocal cerebral dysplasia resulted in local distortion of the cytoarchitecture of the neocortex in four brains (31%), of the entorhinal cortex in two brains (15%), of the cornu Ammonis in four brains and of the dentate gyrus in two brains. Cerebellar flocculonodular dysplasia detected in six subjects (46%), focal dysplasia in the vermis in one case, and hypoplasia in one subject indicate local failure of cerebellar development in 62% of autistic subjects. Detection of flocculonodular dysplasia in only one control subject and of a broad spectrum of focal qualitative neuropathological developmental changes in 12 of 13 examined brains of autistic subjects (92%) reflects multiregional dysregulation of neurogenesis, neuronal migration and maturation in autism, which may contribute to the heterogeneity of the clinical phenotype
PMCID:2869041
PMID: 20198484
ISSN: 1432-0533
CID: 119248

Immunotherapeutic approaches for Alzheimer's disease in transgenic mouse models

Wisniewski, Thomas; Boutajangout, Allal
Alzheimer's disease (AD) is a member of a category of neurodegenerative diseases characterized by the conformational change of a normal protein into a pathological conformer with a high beta-sheet content that renders it resistant to degradation and neurotoxic. In the case of AD the normal soluble amyloid beta (sAbeta) peptide is converted into oligomeric/fibrillar Abeta. The oligomeric forms of Abeta are thought to be the most toxic, while fibrillar Abeta becomes deposited as amyloid plaques and congophilic angiopathy, which both serve as neuropathological markers of the disease. In addition, the accumulation of abnormally phosphorylated tau as soluble toxic oligomers and as neurofibrillary tangles is an essential part of the pathology. Many therapeutic interventions are under investigation to prevent and treat AD. The testing of these diverse approaches to ameliorate AD pathology has been made possible by the existence of numerous transgenic mouse models which each mirror different aspects of AD pathology. Perhaps the most exciting of these approaches is immunomodulation. Vaccination is currently being tried for a range of age associated CNS disorders with great success being reported in many transgenic mouse models. However, there is a discrepancy between these results and current human clinical trials which highlights the limitations of current models and also uncertainties in our understanding of the underlying pathogenesis of AD. No current AD Tg mouse model exactly reflects all aspects of the human disease. Since the underlying etiology of sporadic AD is unknown, the process of creating better Tg models is in constant evolution. This is an essential goal since it will be necessary to develop therapeutic approaches which will be highly effective in humans
PMCID:3124148
PMID: 20012091
ISSN: 1863-2661
CID: 108917

Assessment of chemokine receptor function on monocytes in whole blood: In vitro and ex vivo evaluations of a CCR2 antagonist

Wisniewski, T; Bayne, E; Flanagan, J; Shao, Q; Wnek, R; Matheravidathu, S; Fischer, P; Forrest, M J; Peterson, L; Song, X; Yang, L; Demartino, J A; Struthers, M
Inhibition of monocyte and macrophage function by targeting chemokine receptors represents an attractive strategy for therapeutic intervention in inflammatory diseases. We describe an assay to assess chemokine receptor function on whole blood monocytes by measuring chemokine stimulated change in cell shape as measured by flow cytometry. The relative potential of the chemokine receptors CCR1, CCR2, CCR5, CX(3)CR1, and CXCR4 to activate monocytes in whole blood was evaluated and compared. Analysis of MCP-1 response for monocytes in blood from numerous donors revealed that the assay method had excellent intra-donor reproducibility and sensitivity. Further, the utility of this assay to determine target engagement by chemokine receptor antagonists was demonstrated using a CCR2 antagonist in rhesus monkeys. Blockade of CCR2 on whole blood monocytes was demonstrated ex vivo on blood samples collected from rhesus monkeys administered a small molecule CCR2 antagonist (MK-0812). Using a delayed-type hypersensitivity reaction to elicit monocyte recruitment to the skin of rhesus monkeys, we also evaluated the ability of MK-0812 to block monocyte migration in vivo. Blockade of CCR2 stimulation of whole blood monocytes was correlated with the inhibition of monocyte recruitment to the skin, validating the potential to use this approach in the evaluation of dose selection for chemokine receptor antagonists clinically.
PMID: 19913021
ISSN: 0022-1759
CID: 878062