Try a new search

Format these results:

Searched for:

person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01

Total Results:

1145


Entorhinal cortical defects in Tg2576 mice are present as early as 2-4 months of age

Duffy, Aine M; Morales-Corraliza, Jose; Bermudez-Hernandez, Keria M; Schaner, Michael J; Magagna-Poveda, Alejandra; Mathews, Paul M; Scharfman, Helen E
The entorhinal cortex (EC) is one of the first brain areas to display neuropathology in Alzheimer's disease. A mouse model which simulates amyloid-beta (Abeta) neuropathology, the Tg2576 mouse, was used to address these early changes. Here, we show EC abnormalities occur in 2- to 4-month-old Tg2576 mice, an age before Abeta deposition and where previous studies suggest that there are few behavioral impairments. First we show, using a sandwich enzyme-linked immunosorbent assay, that soluble human Abeta40 and Abeta42 are detectable in the EC of 2-month-old Tg2576 mice before Abeta deposition. We then demonstrate that 2- to 4-month-old Tg2576 mice are impaired at object placement, an EC-dependent cognitive task. Next, we show that defects in neuronal nuclear antigen expression and myelin uptake occur in the superficial layers of the EC in 2- to 4-month-old Tg2576 mice. In slices from Tg2576 mice that contained the EC, there were repetitive field potentials evoked by a single stimulus to the underlying white matter, and a greater response to reduced extracellular magnesium ([Mg2+]o), suggesting increased excitability. However, deep layer neurons in Tg2576 mice had longer latencies to antidromic activation than wild type mice. The results show changes in the EC at early ages and suggest that altered excitability occurs before extensive plaque pathology.
PMCID:4268389
PMID: 25109765
ISSN: 0197-4580
CID: 1141552

Microarray analysis of entorhinal cortex stellate cells in the Ts65Dn mouse model of Down syndrome and Alzheimer’s disease following maternal choline supplementation (MCS) [Meeting Abstract]

Chao, HM; Alldred, MJ; Lee, Sh; Petkova, E; Ginsberg, SD
ORIGINAL:0011761
ISSN: 1558-3635
CID: 2479142

Locus coeruleus projection system impairment in mild cognitive impairment [Meeting Abstract]

Kelly, S C; Ginsberg, S D; Mufson, E J; Counts, S E
A major feature of Alzheimer's disease (AD) is the loss of noradrenergic locus coeruleus (LC) projection neurons that mediate attention, memory, and arousal. However, the extent to which the LC projection system degenerates during the initial stages of AD remains unclear. To address this question, we performed tyrosine hydroxylase (TH) immunohistochemistry and unbiased stereology of LC neurons in tissue harvested postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), amnestic mild cognitive impairment (aMCI, a prodromal AD stage), or mild AD (n = 5-6/group). Stereologic estimates of total LC neuron number revealed a 30-35% decrease in aMCI versus NCI (p < 0.01) and a 45% loss of cells in mild AD compared to NCI (p < 0.01). Furthermore, LC fiber density was selectively reduced in the hippocampus compared to the neocortex of aMCI subjects, suggesting that coeruleohippocampal pathway degeneration marks the transition from normal cognition to prodromal disease. To examine the molecular pathogenic processes underlying LC neurodegeneration in aMCI, we combined laser capture microdissection with custom microarray technology to quantify gene expression patterns in individual TH-immunopositive neurons accessed from LC tissue samples. These studies revealed significant reductions in select functional classes of mRNAs regulating mitochondrial metabolism (e.g., cytochrome c1, cytochrome oxidase subunit 5a, p < 0.01), redox homeostasis (e.g., superoxide dismutase 2, glutathione peroxidase 1, p < 0.01), and cytoskeletal plasticity (e.g., microtubule-associated binding protein 1a, utrophin, p < 0.01) in both aMCI and AD subjects compared to NCI. Taken together, these observations show that LC projection system degeneration is a prominent feature during the transition from NCI to aMCI. In this regard, we are currently examining the extent of LC neuropathology in tissue from "preclinical AD" subjects who died with a clinical diagnosis of NCI but who displayed high postmortem Braak pathology. Targeting the noradrenergic LC system may present a novel disease-modifying strategy for cognitive protection in the elderly
EMBASE:611971734
ISSN: 0963-6897
CID: 2259002

Dissociation of Axonal Neurofilament Content from Its Transport Rate

Yuan, Aidong; Hassinger, Linda; Rao, Mala V; Julien, Jean-Pierre; Miller, Christopher C J; Nixon, Ralph A
The axonal cytoskeleton of neurofilament (NF) is a long-lived network of fibrous elements believed to be a stationary structure maintained by a small pool of transported cytoskeletal precursors. Accordingly, it may be predicted that NF content in axons can vary independently from the transport rate of NF. In the present report, we confirm this prediction by showing that human NFH transgenic mice and transgenic mice expressing human NFL Ser55 (Asp) develop nearly identical abnormal patterns of NF accumulation and distribution in association with opposite changes in NF slow transport rates. We also show that the rate of NF transport in wild-type mice remains constant along a length of the optic axon where NF content varies 3-fold. Moreover, knockout mice lacking NFH develop even more extreme (6-fold) proximal to distal variation in NF number, which is associated with a normal wild-type rate of NF transport. The independence of regional NF content and NF transport is consistent with previous evidence suggesting that the rate of incorporation of transported NF precursors into a metabolically stable stationary cytoskeletal network is the major determinant of axonal NF content, enabling the generation of the striking local variations in NF number seen along axons.
PMCID:4514674
PMID: 26208164
ISSN: 1932-6203
CID: 1684182

Potential implications of a monosynaptic pathway from mossy cells to adult-born granule cells of the dentate gyrus

Scharfman, Helen E; Bernstein, Hannah L
The dentate gyrus (DG) is important to many aspects of hippocampal function, but there are many aspects of the DG that are incompletely understood. One example is the role of mossy cells (MCs), a major DG cell type that is glutamatergic and innervates the primary output cells of the DG, the granule cells (GCs). MCs innervate the GCs as well as local circuit neurons that make GABAergic synapses on GCs, so the net effect of MCs on GCs - and therefore the output of the
PMCID:4541026
PMID: 26347618
ISSN: 1662-5137
CID: 1772502

Calorie Restriction Suppresses Age-Dependent Hippocampal Transcriptional Signatures

Schafer, Marissa J; Dolgalev, Igor; Alldred, Melissa J; Heguy, Adriana; Ginsberg, Stephen D
Calorie restriction (CR) enhances longevity and mitigates aging phenotypes in numerous species. Physiological responses to CR are cell-type specific and variable throughout the lifespan. However, the mosaic of molecular changes responsible for CR benefits remains unclear, particularly in brain regions susceptible to deterioration during aging. We examined the influence of long-term CR on the CA1 hippocampal region, a key learning and memory brain area that is vulnerable to age-related pathologies, such as Alzheimer's disease (AD). Through mRNA sequencing and NanoString nCounter analysis, we demonstrate that one year of CR feeding suppresses age-dependent signatures of 882 genes functionally associated with synaptic transmission-related pathways, including calcium signaling, long-term potentiation (LTP), and Creb signaling in wild-type mice. By comparing the influence of CR on hippocampal CA1 region transcriptional profiles at younger-adult (5 months, 2.5 months of feeding) and older-adult (15 months, 12.5 months of feeding) timepoints, we identify conserved upregulation of proteome quality control and calcium buffering genes, including heat shock 70 kDa protein 1b (Hspa1b) and heat shock 70 kDa protein 5 (Hspa5), protein disulfide isomerase family A member 4 (Pdia4) and protein disulfide isomerase family A member 6 (Pdia6), and calreticulin (Calr). Expression levels of putative neuroprotective factors, klotho (Kl) and transthyretin (Ttr), are also elevated by CR in adulthood, although the global CR-specific expression profiles at younger and older timepoints are highly divergent. At a previously unachieved resolution, our results demonstrate conserved activation of neuroprotective gene signatures and broad CR-suppression of age-dependent hippocampal CA1 region expression changes, indicating that CR functionally maintains a more youthful transcriptional state within the hippocampal CA1 sector.
PMCID:4519125
PMID: 26221964
ISSN: 1932-6203
CID: 1698342

Beneficial Effects of the beta-Secretase Inhibitor GRL-8234 in 5XFAD Alzheimer's Transgenic Mice Lessen During Disease Progression

Devi, Latha; Tang, Jordan; Ohno, Masuo
The beta-secretase enzyme BACE1, which initiates the cleavage of amyloid precursor protein (APP) into the amyloid-beta (Abeta) peptide, is a prime therapeutic target for Alzheimer's disease (AD). However, recent investigations using genetic animal models raise concern that therapeutic BACE1 inhibition may encounter the dramatic reduction of efficacy in ameliorating AD-like pathology and memory deficits during disease progression. Here, we compared the effects of the potent and selective small-molecule BACE1 inhibitor GRL-8234 in different pathological stages of AD mouse model. Specifically, we administered GRL-8234 (33.4 mg/kg, i.p.) once daily for 2 months to 5XFAD transgenic mice, which showed modest (4 months) and massive (10 months of age) Abeta plaque deposition at starting points. Chronic treatments with GRL-8234 reversed memory impairments, as tested by the spontaneous alternation Y-maze task, in the younger 5XFAD group concomitant with significant reductions in cerebral Abeta42 levels. In contrast, only marginal reductions of Abeta42 were observed in 12-month-old 5XFAD mice treated with GRL-8234 and their memory function remained impaired. We found that not only BACE1 but also full-length APP expression was significantly elevated with progressive Abeta accumulation in 5XFAD mice, while GRL-8234 failed to affect these detrimental mechanisms that further accelerate plaque growth in brains of older 5XFAD mice. Therefore, our results provide important insights into the mechanisms by which Abeta accumulation and related memory impairments become less responsive to rescue by BACE1 inhibition during the course of AD development.
PMCID:4414026
PMID: 25523425
ISSN: 1567-2050
CID: 1428662

Sex differences in the neurobiology of epilepsy: A preclinical perspective

Scharfman, Helen E; MacLusky, Neil J
When all of the epilepsies are considered, sex differences are not always clear, despite the fact that many sex differences are known in the normal brain. Sex differences in epilepsy in laboratory animals are also unclear, although robust effects of sex on seizures have been reported, and numerous effects of gonadal steroids have been shown throughout the rodent brain. Here we discuss several reasons why sex differences in seizure susceptibility are unclear or are difficult to study. Examples of robust sex differences in laboratory rats, such as the relative resistance of adult female rats to the chemoconvulsant pilocarpine compared to males, are described. We also describe a novel method that has shed light on sex differences in neuropathology, which is a relatively new techniques that will potentially contribute to sex differences research in the future. The assay we highlight uses the neuronal nuclear antigen NeuN to probe sex differences in adult male and female rats and mice. In females, weak NeuN expression defines a sex difference that previous neuropathological studies have not described. We also show that in adult rats, social isolation stress can obscure the normal effects of 17beta-estradiol to increase excitability in area CA3 of hippocampus. These data underscore the importance of controlling behavioral stress in studies of seizure susceptibility in rodents and suggest that behavioral stress may be one factor that has led to inconsistencies in outcomes of sex differences research. These and other issues have made it difficult to translate our increasing knowledge about the effects of gonadal hormones on the brain to improved treatment for men and women with epilepsy.
PMCID:4252793
PMID: 25058745
ISSN: 0969-9961
CID: 1076192

Defective macroautophagic turnover of brain lipids in the TgCRND8 Alzheimer mouse model: prevention by correcting lysosomal proteolytic deficits

Yang, Dun-Sheng; Stavrides, Philip; Saito, Mitsuo; Kumar, Asok; Rodriguez-Navarro, Jose A; Pawlik, Monika; Huo, Chunfeng; Walkley, Steven U; Saito, Mariko; Cuervo, Ana M; Nixon, Ralph A
Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer's disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B inhibition on lysosomal proteases suggests that enhancing lysosomal proteolysis improves the overall environment of the lysosome and its clearance functions, which may be possibly relevant to a broader range of lysosomal disorders beyond Alzheimer's disease.
PMCID:4240291
PMID: 25270989
ISSN: 0006-8950
CID: 1360292

2014 Report on the Milestones for the US National Plan to Address Alzheimer's Disease

Fargo, Keith N; Aisen, Paul; Albert, Marilyn; Au, Rhoda; Corrada, Maria M; DeKosky, Steven; Drachman, David; Fillit, Howard; Gitlin, Laura; Haas, Magali; Herrup, Karl; Kawas, Claudia; Khachaturian, Ara S; Khachaturian, Zaven S; Klunk, William; Knopman, David; Kukull, Walter A; Lamb, Bruce; Logsdon, Rebecca G; Maruff, Paul; Mesulam, Marsel; Mobley, William; Mohs, Richard; Morgan, David; Nixon, Ralph A; Paul, Steven; Petersen, Ronald; Plassman, Brenda; Potter, William; Reiman, Eric; Reisberg, Barry; Sano, Mary; Schindler, Rachel; Schneider, Lon S; Snyder, Peter J; Sperling, Reisa A; Yaffe, Kristine; Bain, Lisa J; Thies, William H; Carrillo, Maria C
With increasing numbers of people with Alzheimer's and other dementias across the globe, many countries have developed national plans to deal with the resulting challenges. In the United States, the National Alzheimer's Project Act, signed into law in 2011, required the creation of such a plan with annual updates thereafter. Pursuant to this, the US Department of Health and Human Services (HHS) released the National Plan to Address Alzheimer's Disease in 2012, including an ambitious research goal of preventing and effectively treating Alzheimer's disease by 2025. To guide investments, activities, and the measurement of progress toward achieving this 2025 goal, in its first annual plan update (2013) HHS also incorporated into the plan a set of short, medium and long-term milestones. HHS further committed to updating these milestones on an ongoing basis to account for progress and setbacks, and emerging opportunities and obstacles. To assist HHS as it updates these milestones, the Alzheimer's Association convened a National Plan Milestone Workgroup consisting of scientific experts representing all areas of Alzheimer's and dementia research. The workgroup evaluated each milestone and made recommendations to ensure that they collectively constitute an adequate work plan for reaching the goal of preventing and effectively treating Alzheimer's by 2025. This report presents these Workgroup recommendations.
PMID: 25341459
ISSN: 1552-5260
CID: 1316462