Searched for: person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01
Comparable Antigenicity and Immunogenicity of Multimeric Forms of a Novel, Acute HIV-1 Subtype C Gp145 Envelope for Clinical Development [Meeting Abstract]
Wieczorek, L. ; Krebs, S. ; Kalyanaraman, V. ; Whitney, S. ; Matyas, G. R. ; Rao, M. ; Alving, C. R. ; Tong, T. ; Molnar, S. ; Wesberry, M. ; Chenine, A. Laurence ; Tovanabutra, S. ; Sanders-Buell, E. ; Slike, B. ; Alam, S. ; Liao, H. ; Haynes, B. F. ; Williams, C. ; Zolla-Pazner, S. ; Moscoso, C. ; Cheng, H. ; Hoelscher, M. ; Maboko, L. ; Michael, N. ; Robb, M. L. ; VanCott, T. ; Marovich, M. ; Polonis, V.
ISI:000326037500066
ISSN: 0889-2229
CID: 657022
Immunofocusing to HIV's V2 Loop C beta-Strand [Meeting Abstract]
Shmelkov, S. ; Rao, M. ; Wang, S. ; Kong, X. ; Lu, S. ; Cardozo, T.
ISI:000326037500365
ISSN: 0889-2229
CID: 657092
Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome
Velazquez, Ramon; Ash, Jessica A; Powers, Brian E; Kelley, Christy M; Strawderman, Myla; Luscher, Zoe I; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J
In addition to intellectual disability, individuals with Down syndrome (DS) exhibit dementia by the third or fourth decade of life, due to the early onset of neuropathological changes typical of Alzheimer's disease (AD). Deficient ontogenetic neurogenesis contributes to the brain hypoplasia and hypocellularity evident in fetuses and children with DS. A murine model of DS and AD (the Ts65Dn mouse) exhibits key features of these disorders, notably deficient ontogenetic neurogenesis, degeneration of basal forebrain cholinergic neurons (BFCNs), and cognitive deficits. Adult hippocampal (HP) neurogenesis is also deficient in Ts65Dn mice and may contribute to the observed cognitive dysfunction. Herein, we demonstrate that supplementing the maternal diet with additional choline (approximately 4.5 times the amount in normal rodent chow) dramatically improved the performance of the adult trisomic offspring in a radial arm water maze task. Ts65Dn offspring of choline-supplemented dams performed significantly better than unsupplemented Ts65Dn mice. Furthermore, adult hippocampal neurogenesis was partially normalized in the maternal choline supplemented (MCS) trisomic offspring relative to their unsupplemented counterparts. A significant correlation was observed between adult hippocampal neurogenesis and performance in the water maze, suggesting that the increased neurogenesis seen in the supplemented trisomic mice contributed functionally to their improved spatial cognition. These findings suggest that supplementing the maternal diet with additional choline has significant translational potential for DS.
PMCID:4029409
PMID: 23643842
ISSN: 0969-9961
CID: 448382
Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy
Brooks-Kayal, Amy R; Bath, Kevin G; Berg, Anne T; Galanopoulou, Aristea S; Holmes, Gregory L; Jensen, Frances E; Kanner, Andres M; O'Brien, Terence J; Whittemore, Vicky H; Winawer, Melodie R; Patel, Manisha; Scharfman, Helen E
Many symptoms of neurologic or psychiatric illness--such as cognitive impairment, depression, anxiety, attention deficits, and migraine--occur more frequently in people with epilepsy than in the general population. These diverse comorbidities present an underappreciated problem for people with epilepsy and their caregivers because they decrease quality of life, complicate treatment, and increase mortality. In fact, it has been suggested that comorbidities can have a greater effect on quality of life in people with epilepsy than the seizures themselves. There is increasing recognition of the frequency and impact of cognitive and behavioral comorbidities of epilepsy, highlighted in the 2012 Institute of Medicine report on epilepsy. Comorbidities have also been acknowledged, as a National Institutes of Health (NIH) Benchmark area for research in epilepsy. However, relatively little progress has been made in developing new therapies directed specifically at comorbidities. On the other hand, there have been many advances in understanding underlying mechanisms. These advances have made it possible to identify novel targets for therapy and prevention. As part of the International League Against Epilepsy/American Epilepsy Society workshop on preclinical therapy development for epilepsy, our working group considered the current state of understanding related to terminology, models, and strategies for therapy development for the comorbidities of epilepsy. Herein we summarize our findings and suggest ways to accelerate development of new therapies. We also consider important issues to improve research including those related to methodology, nonpharmacologic therapies, biomarkers, and infrastructure.
PMCID:3924317
PMID: 23909853
ISSN: 0013-9580
CID: 829812
Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo
Duffy, Aine M; Schaner, Michael J; Chin, Jeannie; Scharfman, Helen E
Granule cells (GCs) of the dentate gyrus (DG) are considered to be quiescent-they rarely fire action potentials. In contrast, the other glutamatergic cell type in the DG, hilar mossy cells (MCs) often have a high level of spontaneous activity based on recordings in hippocampal slices. MCs project to GCs, so activity in MCs could play an important role in activating GCs. Therefore, we investigated whether MCs were active under basal conditions in vivo, using the immediate early gene c-fos as a tool. We hypothesized that MCs would exhibit c-fos expression even if rats were examined randomly, under normal housing conditions. Therefore, adult male rats were perfused shortly after removal from their home cage and transfer to the laboratory. Remarkably, most c-fos immunoreactivity (ir) was in the hilus, especially temporal hippocampus. C-fos-ir hilar cells co-expressed GluR2/3, suggesting that they were MCs. C-fos-ir MCs were robust even when the animal was habituated to the investigator and laboratory where they were euthanized. However, c-fos-ir in dorsal MCs was reduced under these circumstances, suggesting that ventral and dorsal MCs are functionally distinct. Interestingly, there was an inverse relationship between MC and GC layer c-fos expression, with little c-fos expression in the GC layer in ventral sections where MC expression was strong, and the opposite in dorsal hippocampus. The results support the hypothesis that a subset of hilar MCs are spontaneously active in vivo and provide other DG neurons with tonic depolarizing input. (c) 2013 Wiley Periodicals, Inc.
PMCID:3732572
PMID: 23640815
ISSN: 1050-9631
CID: 515922
The role of autophagy in neurodegenerative disease
Nixon, Ralph A
Autophagy is a lysosomal degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and protein aggregates. These substrates reach lysosomes by several distinct mechanisms, including delivery within endosomes as well as autophagosomes. Completion of digestion involves dynamic interactions among compartments of the autophagic and endocytic pathways. Neurons are particularly vulnerable to disruptions of these interactions, especially as the brain ages. Not surprisingly, mutations of genes regulating autophagy cause neurodegenerative diseases across the age spectrum with exceptional frequency. In late-onset disorders such as Alzheimer's disease, amyotrophic lateral sclerosis and familial Parkinson's disease, defects arise at different stages of the autophagy pathway and have different implications for pathogenesis and therapy. This Review provides an overview of the role of autophagy in neurodegenerative disease, focusing particularly on less frequently considered lysosomal clearance mechanisms and their considerable impact on disease. Various therapeutic strategies for modulating specific stages of autophagy and the current state of drug development for this purpose are also evaluated.
PMID: 23921753
ISSN: 1078-8956
CID: 590312
BDNF-estrogen interactions in hippocampal mossy fiber pathway: implications for normal brain function and disease
Harte-Hargrove, Lauren; Maclusky, Neil J; Scharfman, Helen E
The neurotrophin BDNF and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially-regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17beta-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17beta-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
PMCID:3628287
PMID: 23276673
ISSN: 0306-4522
CID: 210432
Introduction to 'steroid hormone actions in the CNS: The role of brain-derived neurotrophic factor (BDNF)'
Scharfman, H E; Kramer, E A; Luine, V; Srivastava, D P
PMCID:4096957
PMID: 23164677
ISSN: 0306-4522
CID: 210482
Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification
Wolfe, Devin M; Lee, Ju-Hyun; Kumar, Asok; Lee, Sooyeon; Orenstein, Samantha J; Nixon, Ralph A
Autophagy is a lysosomal degradative process which recycles cellular waste and eliminates potentially toxic damaged organelles and protein aggregates. The important cytoprotective functions of autophagy are demonstrated by the diverse pathogenic consequences that may stem from autophagy dysregulation in a growing number of neurodegenerative disorders. In many of the diseases associated with autophagy anomalies, it is the final stage of autophagy-lysosomal degradation that is disrupted. In several disorders, including Alzheimer's disease (AD), defective lysosomal acidification contributes to this proteolytic failure. The complex regulation of lysosomal pH makes this process vulnerable to disruption by many factors, and reliable lysosomal pH measurements have become increasingly important in investigations of disease mechanisms. Although various reagents for pH quantification have been developed over several decades, they are not all equally well suited for measuring the pH of lysosomes. Here, we evaluate the most commonly used pH probes for sensitivity and localisation, and identify LysoSensor yellow/blue-dextran, among currently used probes, as having the optimal profile of properties for measuring lysosomal pH. In addition, we review evidence that lysosomal acidification is defective in AD and extend our original findings, of elevated lysosomal pH in presenilin 1 (PS1)-deficient blastocysts and neurons, to additional cell models of PS1 and PS1/2 deficiency, to fibroblasts from AD patients with PS1 mutations, and to neurons in the PS/APP mouse model of AD.
PMCID:3694736
PMID: 23773064
ISSN: 0953-816x
CID: 427352
G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain
Subbanna, Shivakumar; Shivakumar, Madhu; Umapathy, Nagavedi S; Saito, Mariko; Mohan, Panaiyur S; Kumar, Asok; Nixon, Ralph A; Verin, Alexander D; Psychoyos, Delphine; Basavarajappa, Balapal S
Rodent exposure to binge-like ethanol during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces neuronal cell loss. However, the molecular mechanisms underlying these neuronal losses are still poorly understood. Here, we tested the possibility of histone methylation mediated by G9a (lysine dimethyltransferase) in regulating neuronal apoptosis in P7 mice exposed to ethanol. G9a protein expression, which is higher during embryogenesis and synaptogenic period compared to adult brain, is entirely confined to the cell nuclei in the developing brain. We found that ethanol treatment at P7, which induces apoptotic neurodegeneration in neonatal mice, enhanced G9a activity followed by increased histone H3 lysine 9 (H3K9me2) and 27 (H3K27me2) dimethylation. In addition, it appears that increased dimethylation of H3K9 makes it susceptible to proteolytic degradation by caspase-3 in conditions in which ethanol induces neurodegeneration. Further, pharmacological inhibition of G9a activity prior to ethanol treatment at P7 normalized H3K9me2, H3K27me2 and total H3 proteins to basal levels and prevented neurodegeneration in neonatal mice. Together, these data demonstrate that G9a mediated histone H3K9 and K27 dimethylation critically regulates ethanol-induced neurodegeneration in the developing brain. Furthermore, these findings reveal a novel link between G9a and neurodegeneration in the developing brain exposed to postnatal ethanol and may have a role in fetal alcohol spectrum disorders.
PMCID:3656439
PMID: 23396011
ISSN: 0969-9961
CID: 369642