Try a new search

Format these results:

Searched for:

person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01

Total Results:

1130


Impact of Perinatal Choline Supplementation on Basal Forebrain Cholinergic Neuron Transciptome and Efferents in Adult Ts65Dn Mice, a Model of Down Syndrome [Meeting Abstract]

Kelley, CM; Powers, BE; Velazquez, R; Ash, JA; Ginsberg, SD; Strupp, BJ; Mufson, EJ
ORIGINAL:0008400
ISSN: 0963-6897
CID: 463362

Early Endosomal Abnormalities and Cholinergic Neuron Degeneration in Amyloid-beta Protein Precursor Transgenic Mice

Choi, Jennifer H K; Kaur, Gurjinder; Mazzella, Matthew J; Morales-Corraliza, Jose; Levy, Efrat; Mathews, Paul M
Early endosomal changes, a prominent pathology in neurons early in Alzheimer's disease, also occur in neurons and peripheral tissues in Down syndrome. While in Down syndrome models increased amyloid-beta protein precursor (AbetaPP) expression is known to be a necessary contributor on the trisomic background to this early endosomal pathology, increased AbetaPP alone has yet to be shown to be sufficient to drive early endosomal alterations in neurons. Comparing two AbetaPP transgenic mouse models, one that contains the AbetaPP Swedish K670N/M671L double mutation at the beta-cleavage site (APP23) and one that has the AbetaPP London V717I mutation near the gamma-cleavage site (APPLd2), we show significantly altered early endosome morphology in fronto-parietal neurons as well as enlargement of early endosomes in basal forebrain cholinergic neurons of the medial septal nucleus in the APP23 model, which has the higher levels of AbetaPP beta-C-terminal fragment (betaCTF) accumulation. Early endosomal changes correlate with a marked loss of the cholinergic population, which is consistent with the known dependence of the large projection cholinergic cells on endosome-mediated retrograde neurotrophic transport. Our findings support the idea that increased expression of AbetaPP and AbetaPP metabolites in neurons is sufficient to drive early endosomal abnormalities in vivo, and that disruption of the endocytic system is likely to contribute to basal forebrain cholinergic vulnerability.
PMCID:3616896
PMID: 23254640
ISSN: 1387-2877
CID: 231162

The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function

Myers, Catherine E; Bermudez-Hernandez, Keria; Scharfman, Helen E
Postnatal neurogenesis of granule cells (GCs) in the dentate gyrus (DG) produces GCs that normally migrate from the subgranular zone to the GC layer. However, GCs can mismigrate into the hilus, the opposite direction. Previous descriptions of these hilar ectopic GCs (hEGCs) suggest that they are rare unless there are severe seizures. However, it is not clear if severe seizures are required, and it also is unclear if severe seizures are responsible for the abnormalities of hEGCs, which include atypical dendrites and electrophysiological properties. Here we show that large numbers of hEGCs develop in a transgenic mouse without severe seizures. The mice have a deletion of BAX, which normally regulates apoptosis. Surprisingly, we show that hEGCs in the BAX(-/-) mouse have similar abnormalities as hEGCs that arise after severe seizures. We next asked if there are selective effects of hEGCs, i.e., whether a robust population of hEGCs would have any effect on the DG if they were induced without severe seizures. Indeed, this appears to be true, because it has been reported that BAX(-/-) mice have defects in a behavior that tests pattern separation, which depends on the DG. However, inferring functional effects of hEGCs is difficult in mice with a constitutive BAX deletion because there is decreased apoptosis in and outside the DG. Therefore, a computational model of the normal DG and hippocampal subfield CA3 was used. Adding a small population of hEGCs (5% of all GCs), with characteristics defined empirically, was sufficient to disrupt a simulation of pattern separation and completion. Modeling results also showed that effects of hEGCs were due primarily to "backprojections" of CA3 pyramidal cell axons to the hilus. The results suggest that hEGCs can develop for diverse reasons, do not depend on severe seizures, and a small population of hEGCs may impair DG-dependent function.
PMCID:3695928
PMID: 23840835
ISSN: 1932-6203
CID: 829822

Global Axonal Transport Rates are Unaltered in Htau Mice in vivo

Yuan, Aidong; Kumar, Asok; Sasaki, Takahiro; Duff, Karen; Nixon, Ralph A
Microtubule-based axonal transport is believed to become globally disrupted in Alzheimer's disease in part due to alterations of tau expression or phosphorylation. We previously showed that axonal transport rates along retinal ganglion axons are unaffected by deletion of normal mouse tau or by overexpression of wild-type human tau. Here, we report that htau mice expressing 3-fold higher levels of human tau in the absence of mouse tau also display normal fast and slow transport kinetics despite the presence of abnormally hyperphosphorylated tau in some neurons. In addition, markers of slow transport (neurofilament light subunit) and fast transport (snap25) exhibit normal distributions along optic axons of these mice. These studies demonstrate that human tau overexpression, even when associated with a limited degree of tau pathology, does not necessarily impair general axonal transport function in vivo.
PMCID:3819434
PMID: 23948900
ISSN: 1387-2877
CID: 542722

The entorhinal cortex and neurotrophin signaling in Alzheimer's disease and other disorders

Scharfman, Helen E; Chao, Moses V
A major problem in the field of neurodegeneration is the basis of selective vulnerability of subsets of neurons to disease. In aging, Alzheimer's disease (AD), and other disorders such as temporal lobe epilepsy, the superficial layers of the entorhinal cortex (EC) are an area of selective vulnerability. In AD, it has been suggested that the degeneration of these neurons may play a role in causing the disease because it occurs at an early stage. Therefore, it is important to define the distinctive characteristics of the EC that make this region particularly vulnerable. It has been shown that neurotrophins such as brain-derived neurotrophic factor (BDNF) are critical to the maintenance of the cortical neurons in the adult brain, and specifically the EC. Here we review the circuitry, distinctive functions, and neurotrophin-dependence of the EC that are relevant to its vulnerability. We also suggest that a protein that is critical to the actions of BDNF, the ARMS/Kidins220 scaffold protein, plays an important role in neurotrophic support of the EC.
PMCID:3836904
PMID: 24168199
ISSN: 1758-8928
CID: 652262

Deletion of the eIF2alpha Kinase GCN2 fails to rescue the memory decline associated with Alzheimer's disease

Devi, Latha; Ohno, Masuo
Emerging evidence suggests that dysregulated translation through phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) may contribute to Alzheimer's disease (AD) and related memory impairments. However, the underlying mechanisms remain unclear. Here, we crossed knockout mice for an eIF2alpha kinase (GCN2: general control nonderepressible-2 kinase) with 5XFAD transgenic mice, and investigated whether GCN2 deletion affects AD-like traits in this model. As observed in AD brains, 5XFAD mice recapitulated significant elevations in the beta-secretase enzyme BACE1 and the CREB repressor ATF4 concomitant with a dramatic increase of eIF2alpha phosphorylation. Contrary to expectation, we found that GCN2(-/-) and GCN2(+/-) deficiencies aggravate rather than suppress hippocampal BACE1 and ATF4 elevations in 5XFAD mice, failing to rescue memory deficits as tested by the contextual fear conditioning. The facilitation of these deleterious events resulted in exacerbated beta-amyloid accumulation, plaque pathology and CREB dysfunction in 5XFAD mice with GCN2 mutations. Notably, GCN2 deletion caused overactivation of the PKR-endoplasmic reticulum-related kinase (PERK)-dependent eIF2alpha phosphorylation pathway in 5XFAD mice in the absence of changes in the PKR pathway. Moreover, PERK activation in response to GCN2 deficiency was specific to 5XFAD mice, since phosphorylated PERK levels were equivalent between GCN2(-/-) and wild-type control mice. Our findings suggest that GCN2 may be an important eIF2alpha kinase under the physiological condition, whereas blocking the GCN2 pathway under exposure to significant beta-amyloidosis rather aggravates eIF2alpha phosphorylation leading to BACE1 and ATF4 elevations in AD.
PMCID:3795630
PMID: 24146979
ISSN: 1932-6203
CID: 952122

Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-beta secretion via deregulated lysosomal exocytosis

Annunziata, Ida; Patterson, Annette; Helton, Danielle; Hu, Huimin; Moshiach, Simon; Gomero, Elida; Nixon, Ralph; d'Azzo, Alessandra
Alzheimer's disease (AD) belongs to a category of adult neurodegenerative conditions, which are associated with intracellular and extracellular accumulation of neurotoxic protein aggregates. Understanding how these aggregates are formed, secreted and propagated by neurons has been the subject of intensive research, but so far no preventive or curative therapy for AD is available, and clinical trials have been largely unsuccessful. Here we show that deficiency of the lysosomal sialidase NEU1 leads to the spontaneous occurrence of an AD-like amyloidogenic process in mice. This involves two consecutive events linked to NEU1 loss-of-function--accumulation and amyloidogenic processing of an oversialylated amyloid precursor protein in lysosomes, and extracellular release of Abeta peptides by excessive lysosomal exocytosis. Furthermore, cerebral injection of NEU1 in an established AD mouse model substantially reduces beta-amyloid plaques. Our findings identify an additional pathway for the secretion of Abeta and define NEU1 as a potential therapeutic molecule for AD.
PMCID:4015463
PMID: 24225533
ISSN: 2041-1723
CID: 1085972

The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space

Perez-Gonzalez, Rocio; Gauthier, Sebastien A; Kumar, Asok; Levy, Efrat
In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-β precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-β (Aβ). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and Aβ, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted Aβ, is harmful to the brain.
PMCID:3522305
PMID: 23129776
ISSN: 1083-351x
CID: 3629662

Finding a better drug for epilepsy: preclinical screening strategies and experimental trial design

Simonato, Michele; Loscher, Wolfgang; Cole, Andrew J; Dudek, F Edward; Engel, Jerome Jr; Kaminski, Rafal M; Loeb, Jeffrey A; Scharfman, Helen; Staley, Kevin J; Velisek, Libor; Klitgaard, Henrik
The antiepileptic drugs (AEDs) introduced during the past two decades have provided several benefits: they offered new treatment options for symptomatic treatment of seizures, improved ease of use and tolerability, and lowered risk for hypersensitivity reactions and detrimental drug-drug interactions. These drugs, however, neither attenuated the problem of drug-refractory epilepsy nor proved capable of preventing or curing the disease. Therefore, new preclinical screening strategies are needed to identify AEDs that target these unmet medical needs. New therapies may derive from novel targets identified on the basis of existing hypotheses for drug-refractory epilepsy and the biology of epileptogenesis; from research on genetics, transcriptomics, and epigenetics; and from mechanisms relevant for other therapy areas. Novel targets should be explored using new preclinical screening strategies, and new technologies should be used to develop medium- to high-throughput screening models. In vivo testing of novel drugs should be performed in models mimicking relevant aspects of drug refractory epilepsy and/or epileptogenesis. To minimize the high attrition rate associated with drug development, which arises mainly from a failure to demonstrate sufficient clinical efficacy of new treatments, it is important to define integrated strategies for preclinical screening and experimental trial design. An important tool will be the discovery and implementation of relevant biomarkers that will facilitate a continuum of proof-of-concept approaches during early clinical testing to rapidly confirm or reject preclinical findings, and thereby lower the risk of the overall development effort. In this review, we overview some of the issues related to these topics and provide examples of new approaches that we hope will be more successful than those used in the past.
PMCID:4208688
PMID: 22708847
ISSN: 0013-9580
CID: 214682

Hippocampal ProNGF Signaling Pathways and beta-Amyloid Levels in Mild Cognitive Impairment and Alzheimer Disease

Mufson, Elliott J; He, Bin; Nadeem, Muhammad; Perez, Sylvia E; Counts, Scott E; Leurgans, Sue; Fritz, Jason; Lah, James; Ginsberg, Stephen D; Wuu, Joanne; Scheff, Stephen W
ABSTRACT: Hippocampal precursor of nerve growth factor (proNGF)/NGF signaling occurs in conjunction with beta-amyloid (Abeta) accumulations in Alzheimer disease (AD). To assess the involvement of this pathway in AD progression, we quantified these proteins and their downstream pathway activators in postmortem tissues from the brains of subjects with no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD using immunoblotting and ELISA. Hippocampal proNGF was significantly greater in AD cases compared with those in NCI and MCI cases. TrkA was significantly reduced in MCI compared with those in NCI and AD, whereas p75 neurotrophin receptor, sortilin, and neurotrophin receptor homolog 2 remained stable. Akt decreased from NCI to MCI to AD, whereas phospho-Akt and phospho-Akt-to-Akt ratio were elevated in AD compared with those in MCI and NCI. No differences were found in phospho-Erk, Erk, or their ratio across groups. Although c-jun kinase (JNK) remained stable across groups, phospho-JNK and the phospho-JNK-to-JNK ratio increased significantly in AD compared with those in NCI and MCI. Expression levels of Abeta1-40, Abeta1-42, and Abeta40/42 ratio were stable. Statistical analysis revealed a strong positive correlation between proNGF and phospho-JNK, although only proNGF was negatively correlated with cognitive function and only TrkA was negatively associated with pathologic criteria. These findings suggest that alterations in the hippocampal NGF signaling pathway in MCI and AD favor proNGF-mediated proapoptotic pathways, and that this is independent of Abeta accumulation during AD progression.
PMCID:3481187
PMID: 23095849
ISSN: 0022-3069
CID: 184492