Searched for: person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01
The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function
Myers, Catherine E; Bermudez-Hernandez, Keria; Scharfman, Helen E
Postnatal neurogenesis of granule cells (GCs) in the dentate gyrus (DG) produces GCs that normally migrate from the subgranular zone to the GC layer. However, GCs can mismigrate into the hilus, the opposite direction. Previous descriptions of these hilar ectopic GCs (hEGCs) suggest that they are rare unless there are severe seizures. However, it is not clear if severe seizures are required, and it also is unclear if severe seizures are responsible for the abnormalities of hEGCs, which include atypical dendrites and electrophysiological properties. Here we show that large numbers of hEGCs develop in a transgenic mouse without severe seizures. The mice have a deletion of BAX, which normally regulates apoptosis. Surprisingly, we show that hEGCs in the BAX(-/-) mouse have similar abnormalities as hEGCs that arise after severe seizures. We next asked if there are selective effects of hEGCs, i.e., whether a robust population of hEGCs would have any effect on the DG if they were induced without severe seizures. Indeed, this appears to be true, because it has been reported that BAX(-/-) mice have defects in a behavior that tests pattern separation, which depends on the DG. However, inferring functional effects of hEGCs is difficult in mice with a constitutive BAX deletion because there is decreased apoptosis in and outside the DG. Therefore, a computational model of the normal DG and hippocampal subfield CA3 was used. Adding a small population of hEGCs (5% of all GCs), with characteristics defined empirically, was sufficient to disrupt a simulation of pattern separation and completion. Modeling results also showed that effects of hEGCs were due primarily to "backprojections" of CA3 pyramidal cell axons to the hilus. The results suggest that hEGCs can develop for diverse reasons, do not depend on severe seizures, and a small population of hEGCs may impair DG-dependent function.
PMCID:3695928
PMID: 23840835
ISSN: 1932-6203
CID: 829822
Lysosomal NEU1 deficiency affects amyloid precursor protein levels and amyloid-beta secretion via deregulated lysosomal exocytosis
Annunziata, Ida; Patterson, Annette; Helton, Danielle; Hu, Huimin; Moshiach, Simon; Gomero, Elida; Nixon, Ralph; d'Azzo, Alessandra
Alzheimer's disease (AD) belongs to a category of adult neurodegenerative conditions, which are associated with intracellular and extracellular accumulation of neurotoxic protein aggregates. Understanding how these aggregates are formed, secreted and propagated by neurons has been the subject of intensive research, but so far no preventive or curative therapy for AD is available, and clinical trials have been largely unsuccessful. Here we show that deficiency of the lysosomal sialidase NEU1 leads to the spontaneous occurrence of an AD-like amyloidogenic process in mice. This involves two consecutive events linked to NEU1 loss-of-function--accumulation and amyloidogenic processing of an oversialylated amyloid precursor protein in lysosomes, and extracellular release of Abeta peptides by excessive lysosomal exocytosis. Furthermore, cerebral injection of NEU1 in an established AD mouse model substantially reduces beta-amyloid plaques. Our findings identify an additional pathway for the secretion of Abeta and define NEU1 as a potential therapeutic molecule for AD.
PMCID:4015463
PMID: 24225533
ISSN: 2041-1723
CID: 1085972
The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space
Perez-Gonzalez, Rocio; Gauthier, Sebastien A; Kumar, Asok; Levy, Efrat
In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-β precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-β (Aβ). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and Aβ, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted Aβ, is harmful to the brain.
PMCID:3522305
PMID: 23129776
ISSN: 1083-351x
CID: 3629662
Finding a better drug for epilepsy: preclinical screening strategies and experimental trial design
Simonato, Michele; Loscher, Wolfgang; Cole, Andrew J; Dudek, F Edward; Engel, Jerome Jr; Kaminski, Rafal M; Loeb, Jeffrey A; Scharfman, Helen; Staley, Kevin J; Velisek, Libor; Klitgaard, Henrik
The antiepileptic drugs (AEDs) introduced during the past two decades have provided several benefits: they offered new treatment options for symptomatic treatment of seizures, improved ease of use and tolerability, and lowered risk for hypersensitivity reactions and detrimental drug-drug interactions. These drugs, however, neither attenuated the problem of drug-refractory epilepsy nor proved capable of preventing or curing the disease. Therefore, new preclinical screening strategies are needed to identify AEDs that target these unmet medical needs. New therapies may derive from novel targets identified on the basis of existing hypotheses for drug-refractory epilepsy and the biology of epileptogenesis; from research on genetics, transcriptomics, and epigenetics; and from mechanisms relevant for other therapy areas. Novel targets should be explored using new preclinical screening strategies, and new technologies should be used to develop medium- to high-throughput screening models. In vivo testing of novel drugs should be performed in models mimicking relevant aspects of drug refractory epilepsy and/or epileptogenesis. To minimize the high attrition rate associated with drug development, which arises mainly from a failure to demonstrate sufficient clinical efficacy of new treatments, it is important to define integrated strategies for preclinical screening and experimental trial design. An important tool will be the discovery and implementation of relevant biomarkers that will facilitate a continuum of proof-of-concept approaches during early clinical testing to rapidly confirm or reject preclinical findings, and thereby lower the risk of the overall development effort. In this review, we overview some of the issues related to these topics and provide examples of new approaches that we hope will be more successful than those used in the past.
PMCID:4208688
PMID: 22708847
ISSN: 0013-9580
CID: 214682
Hippocampal ProNGF Signaling Pathways and beta-Amyloid Levels in Mild Cognitive Impairment and Alzheimer Disease
Mufson, Elliott J; He, Bin; Nadeem, Muhammad; Perez, Sylvia E; Counts, Scott E; Leurgans, Sue; Fritz, Jason; Lah, James; Ginsberg, Stephen D; Wuu, Joanne; Scheff, Stephen W
ABSTRACT: Hippocampal precursor of nerve growth factor (proNGF)/NGF signaling occurs in conjunction with beta-amyloid (Abeta) accumulations in Alzheimer disease (AD). To assess the involvement of this pathway in AD progression, we quantified these proteins and their downstream pathway activators in postmortem tissues from the brains of subjects with no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD using immunoblotting and ELISA. Hippocampal proNGF was significantly greater in AD cases compared with those in NCI and MCI cases. TrkA was significantly reduced in MCI compared with those in NCI and AD, whereas p75 neurotrophin receptor, sortilin, and neurotrophin receptor homolog 2 remained stable. Akt decreased from NCI to MCI to AD, whereas phospho-Akt and phospho-Akt-to-Akt ratio were elevated in AD compared with those in MCI and NCI. No differences were found in phospho-Erk, Erk, or their ratio across groups. Although c-jun kinase (JNK) remained stable across groups, phospho-JNK and the phospho-JNK-to-JNK ratio increased significantly in AD compared with those in NCI and MCI. Expression levels of Abeta1-40, Abeta1-42, and Abeta40/42 ratio were stable. Statistical analysis revealed a strong positive correlation between proNGF and phospho-JNK, although only proNGF was negatively correlated with cognitive function and only TrkA was negatively associated with pathologic criteria. These findings suggest that alterations in the hippocampal NGF signaling pathway in MCI and AD favor proNGF-mediated proapoptotic pathways, and that this is independent of Abeta accumulation during AD progression.
PMCID:3481187
PMID: 23095849
ISSN: 0022-3069
CID: 184492
Detection of antibodies to the alpha 4 beta 7 integrin binding site on HIV-1 gp120 V2 loop using a novel cell adhesion assay [Meeting Abstract]
Rao, M.; Karasavvas, N.; Pinter, A.; Liao, H.; Bonsignori, M.; Mathieson, B.; Zolla-Pazner, S.; Haynes, B. F.; Michael, N. L.; Kim, J. H.; Alving, C. R.; Peachman, K. K.
ISI:000309472100144
ISSN: 1742-4690
CID: 181572
Antigenicity and immunogenicity of a novel, acute HIV-1 Tanzanian subtype C gp145 envelope protein for clinical development [Meeting Abstract]
Polonis, V.; Wieczorek, L.; Kalyanaraman, V.; Matyas, G.; Whitney, S.; Williams, C.; Tovanabutra, S.; Sanders-Buell, E.; Wesberry, M.; Ochsenbauer, C.; Chenine, A.; Rao, M.; Tong, T.; Alving, C.; Cheng, H.; Zolla-Pazner, S.; Michael, N.; VanCott, T.; Marovich, M.
ISI:000309472100396
ISSN: 1742-4690
CID: 181622
"Untangling" Alzheimer's disease and epilepsy
Scharfman, Helen E
There is a substantial body of evidence that spontaneous recurrent seizures occur in a subset of patients with Alzheimer disease (AD), especially the familial forms that have an early onset. In transgenic mice that simulate these genetic forms of AD, seizures or reduced seizure threshold have also been reported. Mechanisms underlying the seizures or reduced seizure threshold in these mice are not yet clear and are likely to be complex, because the synthesis of amyloid beta (Abeta) involves many peptides and proteases that influence excitability. Based on transgenic mouse models of AD where Abeta and its precursor are elevated, it has been suggested that seizures are caused by the downregulation of the Nav1.1 sodium channel in a subset of GABAergic interneurons, leading to a reduction in GABAergic inhibition. Another mechanism of hyperexcitability appears to involve tau, because deletion of tau reduces seizures in some of the same transgenic mouse models of AD. Therefore, altered excitability may be as much a characteristic of AD as plaques and tangles-especially for the familial forms of AD.
PMCID:3482723
PMID: 23118602
ISSN: 1535-7511
CID: 210442
Early cognitive experience prevents adult deficits in a neurodevelopmental schizophrenia model
Lee, Heekyung; Dvorak, Dino; Kao, Hsin-Yi; Duffy, Aine M; Scharfman, Helen E; Fenton, Andre A
Brain abnormalities acquired early in life may cause schizophrenia, characterized by adulthood onset of psychosis, affective flattening, and cognitive impairments. Cognitive symptoms, like impaired cognitive control, are now recognized to be important treatment targets but cognition-promoting treatments are ineffective. We hypothesized that cognitive training during the adolescent period of neuroplastic development can tune compromised neural circuits to develop in the service of adult cognition and attenuate schizophrenia-related cognitive impairments that manifest in adulthood. We report, using neonatal ventral hippocampus lesion rats (NVHL), an established neurodevelopmental model of schizophrenia, that adolescent cognitive training prevented the adult cognitive control impairment in NVHL rats. The early intervention also normalized brain function, enhancing cognition-associated synchrony of neural oscillations between the hippocampi, a measure of brain function that indexed cognitive ability. Adolescence appears to be a critical window during which prophylactic cognitive therapy may benefit people at risk of schizophrenia.
PMCID:3437240
PMID: 22920261
ISSN: 0896-6273
CID: 182022
The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease
Ihara, Yasuo; Morishima-Kawashima, Maho; Nixon, Ralph
As neurons age, their survival depends on eliminating a growing burden of damaged, potentially toxic proteins and organelles-a capability that declines owing to aging and disease factors. Here, we review the two proteolytic systems principally responsible for protein quality control in neurons and their important contributions to Alzheimer disease pathogenesis. In the first section, the discovery of paired helical filament ubiquitination is described as a backdrop for discussing the importance of the ubiquitin-proteasome system in Alzheimer disease. In the second section, we review the prominent involvement of the lysosomal system beginning with pathological endosomal-lysosomal activation and signaling at the very earliest stages of Alzheimer disease followed by the progressive failure of autophagy. These abnormalities, which result in part from Alzheimer-related genes acting directly on these lysosomal pathways, contribute to the development of each of the Alzheimer neuropathological hallmarks and represent a promising therapeutic target.
PMID: 22908190
ISSN: 2157-1422
CID: 3373282