Try a new search

Format these results:

Searched for:

person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01

Total Results:

1145


The C-Terminal Domains of NF-H and NF-M Subunits Maintain Axonal Neurofilament Content by Blocking Turnover of the Stationary Neurofilament Network

Rao, Mala V; Yuan, Aidong; Campbell, Jabbar; Kumar, Asok; Nixon, Ralph A
Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF) subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M)(tailDelta)] mice that the deletion of both of these domains selectively lowers NF levels 3-6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M)(tailDelta) mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M)(tailDelta) axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.
PMCID:3448626
PMID: 23028520
ISSN: 1932-6203
CID: 179098

Hilar mossy cells of the dentate gyrus: a historical perspective

Scharfman, Helen E; Myers, Catherine E
THE CIRCUITRY OF THE DENTATE GYRUS (DG) OF THE HIPPOCAMPUS IS UNIQUE COMPARED TO OTHER HIPPOCAMPAL SUBFIELDS BECAUSE THERE ARE TWO GLUTAMATERGIC PRINCIPAL CELLS INSTEAD OF ONE: granule cells, which are the vast majority of the cells in the DG, and the so-called "mossy cells." The distinctive appearance of mossy cells, the extensive divergence of their axons, and their vulnerability to excitotoxicity relative to granule cells has led to a great deal of interest in mossy cells. Nevertheless, there is no consensus about the normal functions of mossy cells and the implications of their vulnerability. There even seems to be some ambiguity about exactly what mossy cells are. Here we review initial studies of mossy cells, characteristics that define them, and suggest a practical definition to allow investigators to distinguish mossy cells from other hilar neurons even if all morphological and physiological information is unavailable due to technical limitations of their experiments. In addition, hypotheses are discussed about the role of mossy cells in the DG network, reasons for their vulnerability and their implications for disease.
PMCID:3572871
PMID: 23420672
ISSN: 1662-5110
CID: 223272

Perinatal choline supplementation improves spatial learning and increases cholinergic neuron density in the medial septal nucleus in the Ts65Dn mouse model of Down syndrome [Meeting Abstract]

Velazquez, Ramon; Ash, Jessica; Kelly, Christy; Powers, Brian; Strawderman, Myla; Mufson, Elliot; Ginsberg, Stephen; Strupp, Barbara
ORIGINAL:0008399
ISSN: 0892-0362
CID: 463342

Transcriptome-to-reactome biosimulation: Basal forebrain cholinergic neuron neurotrophin signaling [Meeting Abstract]

Phelix, C; Rahimi, O; Colom, L; Perry, G; Ginsberg, S
Background: Neurotrophin signaling of cholinergic basal forebrain (CBF) neurons is critical for survival and plasticity. Microaspiration of identified CBF neurons from postmortem human brain revealed a shift in balance of neurotrophin receptors toward cell death pathways during the progression of Alzheimer's disease (AD). Methods: In this study transcriptomic data from mouse basal forebrain cholinergic neurons (BFCNs; NCBI GEO GSE13379) were used to derive parameters for a deterministic kinetic model of the nerve growth factor (NGF) signaling pathway from Reactome, with TrkB receptor mechanisms added. This method is called Transcriptome-To-Reactome (TTR)-. The biosimulation was performed using COPASI software and included 11 compartments 435 species, and 263 reactions; 245 genes were used to determine initial values of species and kinetic values of reactions. The mouse BFCN model was considered baseline and a biosimulation was run with two doses of NGF, 500 m M and 10 mM, delivered as a bolus and for a 10 and 240 second duration, respectively. This approach tested selectively for p75 NTR and TrkA receptor mediated mechanisms. A second biosimulation test used a combination of 25 mM brain derived neurotrophic factor (BDNF) and 10 m M NGF as a continuous exposure for 60 min duration; this approach evaluated stimulation of p75 NTR TrkA, and TrkB. Based on the human microarray results demonstrating downregulation of TrkA (50%) and TrkB (60%), the corresponding parameters in the TTR biosimulation were decreased by the same amount. Results: Baseline results were validated from published literature on neuronal calcium levels mediated via the phospholipase C-g and inositol- 3-phosphate pathway at both bolus doses of NGF alone. With the corresponding parameters decreased in the TTR biosimulation, Figure 1: A) The reaction flux for c-RAF1 phosphorylation of MEK1 was delayed to peak value by 1.5 min from exposure, but the peak value was increased to 5 times the baseline value; B) Moreover, a slight shift t!
EMBASE:70860407
ISSN: 1552-5260
CID: 460992

Circulating Ab40 influences plasma BDNF levels and white matter integrity [Meeting Abstract]

Pomara, N; Bruno, D; Pillai, A; Nierenberg, J; Ginsberg, S; Petkova, E; Sidtis, J J; Mehta, P; Zetterberg, H; Blennow, K; Buckley, P
Background: Reductions in brain-derived neurotrophic factor (BDNF) have been implicated in the pathophysiology of Alzheimer's disease (AD). Nevertheless, the factors influencing central and peripheral BDNF levels are still poorly understood. Cerebral microvascular endothelial cells are known to be a major source of BDNF with a rate of production by far exceeding that of cortical neurons. Exposure of these cells to amyloid beta (Ab), results in cell death or injury with significant reductions in BDNF secretion. Moreover, in rodents, infusion of Ab40 into the carotid resulted in a disruption of endothelial cells, which was not observed with Ab42. Plasma Ab40 levels have also been associated with white matter hyperintense lesions (WMHI) on MRI scans in AD, an effect that may be mediated by the toxic effects of soluble Ab40 on small cerebral blood vessels and endothelial cells. Therefore, we hypothesized that concentrations of plasma Ab40, but not Ab42, would have a negative effect on plasma BDNF and on measures of white matter integrity as determined by Diffusion Tensor Imaging (DTI). Methods: To test this hypothesis, we examined BDNF and Ab levels in plasma from 119 subjects with intact cognition (no dementia and a Mini-Mental State Exam score of at least 28) and no gross MRI abnormalities other than white matter hyperintensities. Of these, 88 subjects also had BDNF in plasma determined. Results: Consistent with our prediction, Ab40 was inversely correlated with BDNF concentrations (P <.001), whereas Ab42 was independent (P = .231). Fractional anisotropy (FA; a measure of white matter integrity in DTI) was also inversely correlated with Ab40 (P = .001) and so was performance in delayed recall (P = .029). Conclusions: In cognitively intact individuals, circulating Ab40 results in reduction in plasma BDNF, white matter integrity (FA), and memory performance. As such, it may have prognostic significance
EMBASE:70859900
ISSN: 1552-5260
CID: 461002

Analysis of individual 3-repeat tau (3Rtau) and 4-repeat tau (4Rtau) isoforms in postmortem human entorhinal cortex via a qPCR-based assay [Meeting Abstract]

Che, S.; Andreadis, A.; Petkova, E.; Ginsberg, S. D.
BIOSIS:PREV201200722280
ISSN: 1558-3635
CID: 459202

Neurotrophin signaling pathways are altered in postmortem Alzheimer's disease (AD) frontal cortex [Meeting Abstract]

Wu, S. H.; Elarova, I.; Fol, R.; Chao, M. V.; Ginsberg, S. D.; Jeanneteau, F.
BIOSIS:PREV201200722268
ISSN: 1558-3635
CID: 459022

Primary lysosomal dysfunction causes cargo-specific deficits of axonal transport leading to Alzheimer-like neuritic dystrophy

Lee, Sooyeon; Sato, Yutaka; Nixon, Ralph A
Abnormally swollen regions of axons and dendrites (neurites) filled mainly with autophagy-related organelles represent the highly characteristic and widespread form of "neuritic dystrophy" in Alzheimer disease (AD), which implies dysfunction of autophagy and axonal transport. In this punctum, we discuss our recent findings that autophagic/lysosomal degradation is critical to proper axonal transport of autophagic vacuoles (AVs) and lysosomes. We showed that lysosomal protease inhibition induces defective axonal transport of specific cargoes, causing these cargoes to accumulate in axonal swellings that biochemically and morphologically resemble the dystrophic neurites in AD. Our findings suggest that a cargo-specific failure of axonal transport promotes neuritic dystrophy in AD, which involves a mechanism distinct from the global axonal transport deficits seen in some other neurodegenerative diseases.
PMCID:3327621
PMID: 22024748
ISSN: 1554-8627
CID: 166106

Circulating Abeta40 negatively influences plasma BDNF levels [Meeting Abstract]

Pomara, N; Bruno, D; Pillai, A; Nierenberg, J J; Ginsberg, S D; Mehta, P D; Zetterberg, H; Blennow, K; Buckley, P F
Background: Reductions in brain-derived neurotrophic factor (BDNF) have been implicated in the pathophysiology of depression. Nevertheless, the factors influencing central and peripheral BDNF levels are still poorly understood. Cerebral microvascular endothelial cells are known to be a major source of BDNF within the brain. Exposure of these cells to amyloid beta (Abeta), which may play a role in the pathophysiology of late-life depression, results in cell death or injury with significant reductions in BDNF secretion. Moreover, in rodents, infusion of Abeta40 into the carotid artery resulted in a disruption of endothelial cells, which was not observed with Abeta42 infusion. Therefore, we hypothesized that concentrations of plasma Abeta40, but not Abeta42, would have a negative effect on plasma BDNF levels. Methods: We examined BDNF and Abeta levels in plasma via immunoblotting and ELISA assays, respectively, from 88 subjects with intact cognition (no dementia and a Mini-Mental State Exam score of at least 28) and no gross MRI abnormalities other than white matter hyperintensities. As these subjects were originally recruited for a study on major depressive disorder (MDD), 45 had MDD and 43 were age-matched controls. Results: Consistent with our prediction, Abeta40 levels were inversely correlated with BDNF concentrations (p<.001), whereas Abeta42 levels were independent of BDNF expression (p=.231). This pattern was similar when MDD and control subjects were analyzed separately. Discussion: Our results are consistent with the hypothesis that cerebral endothelial cells are a contributing source of peripheral BDNF and that their disruption by circulating Abeta40 results in reduction in BDNF. However, these preliminary findings need confirmation, and the mechanisms for our observation, including Abeta40-induced cerebral endothelial cell dysfunction, will have to be clarified
EMBASE:70607253
ISSN: 0893-133x
CID: 463332

Sensory Network Dysfunction, Behavioral Impairments, and Their Reversibility in an Alzheimer's beta-Amyloidosis Mouse Model

Wesson DW; Borkowski AH; Landreth GE; Nixon RA; Levy E; Wilson DA
The unique vulnerability of the olfactory system to Alzheimer's disease (AD) provides a quintessential translational tool for understanding mechanisms of synaptic dysfunction and pathological progression in the disease. Using the Tg2576 mouse model of beta-amyloidosis, we show that aberrant, hyperactive olfactory network activity begins early in life, before detectable behavioral impairments or comparable hippocampal dysfunction and at a time when amyloid-beta (Abeta) deposition is restricted to the olfactory bulb (OB). Hyperactive odor-evoked activity in the piriform cortex (PCX) and increased OB-PCX functional connectivity emerged at a time coinciding with olfactory behavior impairments. This hyperactive activity persisted until later in life when the network converted to a hyporesponsive state. This conversion was Abeta-dependent, because liver-X receptor agonist treatment to promote Abeta degradation rescued the hyporesponsive state and olfactory behavior. These data lend evidence to a novel working model of olfactory dysfunction in AD and, complimentary to other recent works, suggest that disease-relevant network dysfunction is highly dynamic and region specific, yet with lasting effects on cognition and behavior
PMCID:3417321
PMID: 22049439
ISSN: 1529-2401
CID: 145504