Try a new search

Format these results:

Searched for:

person:nixonr01 or ginsbs01 or levye01 or mathep01 or ohnom01 or raom01 or scharh01 or yangd02 or yuana01

Total Results:

1145


Progressive, potassium-sensitive epileptiform activity in hippocampal area CA3 of pilocarpine-treated rats with recurrent seizures

McCloskey, Daniel P; Scharfman, Helen E
Rat hippocampal area CA3 pyramidal cells synchronously discharge in rhythmic bursts of action potentials after acute disinhibition or convulsant treatment in vitro. These burst discharges resemble epileptiform activity, and are of interest because they may shed light on mechanisms underlying limbic seizures. However, few studies have examined CA3 burst discharges in an animal model of epilepsy, because a period of prolonged, severe seizures (status epilepticus) is often used to induce the epileptic state, which can lead to extensive neuronal loss in CA3. Therefore, the severity of pilocarpine-induced status epilepticus was decreased with anticonvulsant treatment to reduce damage. Rhythmic burst discharges were recorded in the majority of slices from these animals, between two weeks and nine months after status epilepticus. The incidence and amplitude of bursts progressively increased with time after status, even after spontaneous behavioral seizures had begun. The results suggest that modifying the pilocarpine models of temporal lobe epilepsy to reduce neuronal loss leads to robust network synchronization in area CA3. The finding that these bursts increase long after spontaneous behavioral seizures begin supports previous arguments that temporal lobe epilepsy exhibits progressive pathophysiology.
PMCID:3215800
PMID: 21880468
ISSN: 0920-1211
CID: 210462

Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments

Veeranna; Yang, Dun-Sheng; Lee, Ju-Hyun; Vinod, K Yaragudri; Stavrides, Philip; Amin, Niranjana D; Pant, Harish C; Nixon, Ralph A
Cytoskeletal protein phosphorylation is frequently altered in neuropathologic states but little is known about changes during normal aging. Here we report that declining protein phosphatase activity, rather than activation of kinases, underlies aging-related neurofilament hyperphosphorylation. Purified PP2A or PP2B dephosphorylated the heavy neurofilament (NFH) subunit or its extensively phorphorylated carboxyl-terminal domain in vitro. In cultured primary hippocampal neurons, inhibiting either phosphatase induced NFH phosphorylation without activating known neurofilament kinases. Neurofilament phosphorylation in the mouse CNS, as reflected by levels of the RT-97 phosphoepitope associated with late axon maturation, more than doubled during the 12-month period after NFH expression plateaued at p21. This was accompanied by declines in levels and activity of PP2A but not PP2B, and no rise in activities of neurofilament kinases (Erk1,2, cdk5 and JNK1,2). Inhibiting PP2A in mice in vivo restored brain RT-97 to levels seen in young mice. Declining PP2A activity, therefore, can account for rising neurofilament phosphorylation in maturing brain, potentially compounding similar changes associated with adult-onset neurodegenerative diseases.
PMCID:2891331
PMID: 20031277
ISSN: 0197-4580
CID: 1085962

Network dysfunction, olfactory behavior impairments, and their reversibility in an Alzheimer's b-amyloidosis mouse model [Meeting Abstract]

Wesson, D W; Borkowski, A H; Landreth, G E; Nixon, R A; Levy, E; Wilson, D A
The vulnerability of the olfactory system to Alzheimer's disease (AD) pathology and the high incidence of olfactory perceptual dysfunction in early stages of the disease makes the olfactory system a unique model for understanding mechanisms of synaptic and neural network dysfunction in AD. Here we demonstrate aberrant neural oscillations within the olfactory bulb (OB) and piriform cortex (PCX) of mice overexpressing human mutations of amyloid precursor protein (APP). Network dysfunction was evident starting at 3 months of age in APP mice, prior to the onset of significant behavioral impairments or comparable hippocampal network dysfunction. Coinciding with the onset of behavioral impairments, we found hyperactivity of odor-evoked responses in the PCX and enhanced coherence between the OB and PCX. In contrast, older APP mice with established disease-related pathology were characterized by hyporesponsive PCX odor-evoked activity and impaired behavior which were both recovered by treatment with a Liver-X Receptor (LXR) agonist. These results complement recent findings in other neural networks and suggest that disease-relevant network dysfunction can be transient and region specific, yet with lasting effects on cognition and behavior
EMBASE:71027912
ISSN: 0379-864x
CID: 288242

Differential regulation of catechol-O-methyltransferase expression in a mouse model of aggression

Ginsberg SD; Che S; Hashim A; Zavadil J; Cancro R; Lee SH; Petkova E; Sershen HW; Volavka J
This study was designed to understand molecular and cellular mechanisms underlying aggressive behaviors in mice exposed to repeated interactions in their homecage with conspecifics. A resident-intruder procedure was employed whereby two males were allowed to interact for 10 min trials, and aggressive and/or submissive behaviors (e.g., degree of attacking, biting, chasing, grooming, rearing, or upright posture) were assessed. Following 10 days of behavioral trials, brains were removed and dissected into specific regions including the cerebellum, frontal cortex, hippocampus, midbrain, pons, and striatum. Gene expression analysis was performed using real-time quantitative polymerase-chain reaction (qPCR) for catechol-O-methyltransferase (COMT) and tyrosine hydroxylase (TH). Compared to naive control mice, significant up regulation of COMT expression of residents was observed in the cerebellum, frontal cortex, hippocampus, midbrain, and striatum; in all of these brain regions the COMT expression of residents was also significantly higher than that of intruders. The intruders also had a significant down regulation (compared to naive control mice) within the hippocampus, indicating a selective decrease in COMT expression in the hippocampus of submissive subjects. Immunoblot analysis confirmed COMT up regulation in the midbrain and hippocampus of residents and down regulation in intruders. qPCR analysis of TH expression indicated significant up regulation in the midbrain of residents and concomitant down regulation in intruders. These findings implicate regionally- and behaviorally-specific regulation of COMT and TH expression in aggressive and submissive behaviors. Additional molecular and cellular characterization of COMT, TH, and other potential targets is warranted within this animal model of aggression
PMCID:3199365
PMID: 21512897
ISSN: 1863-2661
CID: 137055

Pattern separation in the dentate gyrus: A role for the CA3 backprojection

Myers CE; Scharfman HE
Many theories of hippocampal function assume that area CA3 of hippocampus is capable of performing rapid pattern storage, as well as pattern completion when a partial version of a familiar pattern is presented, and that the dentate gyrus (DG) is a preprocessor that performs pattern separation, facilitating storage and recall in CA3. The latter assumption derives partly from the anatomical and physiological properties of DG. However, the major output of DG is from a large number of DG granule cells to a smaller number of CA3 pyramidal cells, which potentially negates the pattern separation performed in the DG. Here, we consider a simple CA3 network model, and consider how it might interact with a previously developed computational model of the DG. The resulting 'standard' DG-CA3 model performs pattern storage and completion well, given a small set of sparse, randomly derived patterns representing entorhinal input to the DG and CA3. However, under many circumstances, the pattern separation achieved in the DG is not as robust in CA3, resulting in a low storage capacity for CA3, compared to previous mathematical estimates of the storage capacity for an autoassociative network of this size. We also examine an often-overlooked aspect of hippocampal anatomy that might increase functionality in the combined DG-CA3 model. Specifically, axon collaterals of CA3 pyramidal cells project 'back' to the DG ('backprojections'), exerting inhibitory effects on granule cells that could potentially ensure that different subpopulations of granule cells are recruited to respond to similar patterns. In the model, addition of such backprojections improves both pattern separation and storage capacity. We also show that the DG-CA3 model with backprojections provides a better fit to empirical data than a model without backprojections. Therefore, we hypothesize that CA3 backprojections might play an important role in hippocampal function. (c) 2010 Wiley-Liss, Inc
PMCID:2976779
PMID: 20683841
ISSN: 1098-1063
CID: 138349

Alzheimer-specific variants in the 3'UTR of Amyloid precursor protein affect microRNA function

Delay, Charlotte; Calon, Frederic; Mathews, Paul; Hebert, Sebastien S
ABSTRACT: BACKGROUND: APP expression misregulation can cause genetic Alzheimer's disease (AD). Recent evidences support the hypothesis that polymorphisms located in microRNA (miRNA) target sites could influence the risk of developing neurodegenerative disorders such as Parkinson's disease (PD) and frontotemporal dementia. Recently, a number of single nucleotide polymorphisms (SNPs) located in the 3'UTR of APP have been found in AD patients with family history of dementia. Because miRNAs have previously been implicated in APP expression regulation, we set out to determine whether these polymorphisms could affect miRNA function and therefore APP levels. RESULTS: Bioinformatics analysis identified twelve putative miRNA bindings sites located in or near the APP 3'UTR variants T117C, A454G and A833C. Among those candidates, seven miRNAs, including miR-20a, miR-17, miR-147, miR-655, miR-323-3p, miR-644, and miR-153 could regulate APP expression in vitro and under physiological conditions in cells. Using luciferase-based assays, we could show that the T117C variant inhibited miR-147 binding, whereas the A454G variant increased miR-20a binding, consequently having opposite effects on APP expression. CONCLUSIONS: Taken together, our results provide proof-of-principle that APP 3'UTR polymorphisms could affect AD risk through modulation of APP expression regulation, and set the stage for further association studies in genetic and sporadic AD
PMCID:3195754
PMID: 21982160
ISSN: 1750-1326
CID: 140551

Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer's disease

Counts, Scott E; Che, Shaoli; Ginsberg, Stephen D; Mufson, Elliott J
The higher incidence rate of Alzheimer's disease (AD) in elderly women indicates that gender plays a role in AD pathogenesis. Evidence from clinical and pharmacologic studies, neuropathological examinations, and models of hormone replacement therapy suggest that cholinergic basal forebrain (CBF) cortical projection neurons within the nucleus basalis (NB), which mediate memory and attention and degenerate in AD, may be preferentially vulnerable in elderly women compared to men. CBF neurons depend on nerve growth factor (NGF) and their cognate receptors (trkA and p75(NTR)) for their survival and maintenance. We recently demonstrated a shift in the balance of NGF and its receptors toward cell death mechanisms during the progression of AD. To address whether gender affects NGF signaling system expression within the CBF, we used single cell RNA amplification and custom microarray technologies to compare gene expression profiles of single cholinergic NB neurons in tissue specimens from male and female members of the Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. p75(NTR) expression within male cholinergic NB neurons was unchanged across clinical diagnosis, whereas p75(NTR) mRNA levels in female NB neurons exhibited a approximately 40% reduction in AD compared to NCI. Male AD subjects displayed a approximately 45% reduction in trkA mRNA levels within NB neurons compared to NCI and MCI. In contrast, NB neuronal trkA expression in females was reduced approximately 50% in both MCI and AD compared to NCI. Reduced trkA mRNA levels were associated with poorer global cognitive performance and higher Braak scores in the female subjects. In addition, we found a female-selective reduction in GluR2 AMPA glutamate receptor subunit expression in NB neurons in AD. These data suggest that cholinergic NB neurons in females may be at greater risk for degeneration during the progression of AD and support the concept of gender-specific therapeutic interventions during the preclinical stages of the disease.
PMCID:3155625
PMID: 21397006
ISSN: 0891-0618
CID: 165458

Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease

Ginsberg, Stephen D; Mufson, Elliott J; Alldred, Melissa J; Counts, Scott E; Wuu, Joanne; Nixon, Ralph A; Che, Shaoli
Endocytic system dysfunction is one of the earliest disturbances that occur in Alzheimer's disease (AD), and may underlie the selective vulnerability of cholinergic basal forebrain (CBF) neurons during the progression of dementia. Herein we report that genes regulating early and late endosomes are selectively upregulated within CBF neurons in mild cognitive impairment (MCI) and AD. Specifically, upregulation of rab4, rab5, rab7, and rab27 was observed in CBF neurons microdissected from postmortem brains of individuals with MCI and AD compared to age-matched control subjects with no cognitive impairment (NCI). Upregulated expression of rab4, rab5, rab7, and rab27 correlated with antemortem measures of cognitive decline in individuals with MCI and AD. qPCR validated upregulation of these select rab GTPases within microdissected samples of the basal forebrain. Moreover, quantitative immunoblot analysis demonstrated upregulation of rab5 protein expression in the basal forebrain of subjects with MCI and AD. The elevation of rab4, rab5, and rab7 expression is consistent with our recent observations in CA1 pyramidal neurons in MCI and AD. These findings provide further support that endosomal pathology accelerates endocytosis and endosome recycling, which may promote aberrant endosomal signaling and neurodegeneration throughout the progression of AD
PMCID:3163754
PMID: 21669283
ISSN: 1873-6300
CID: 136996

Synaptic Autoregulation by Metalloproteases and {gamma}-Secretase

Restituito, Sophie; Khatri, Latika; Ninan, Ipe; Mathews, Paul M; Liu, Xin; Weinberg, Richard J; Ziff, Edward B
The proteolytic machinery comprising metalloproteases and gamma-secretase, an intramembrane aspartyl protease involved in Alzheimer's disease, cleaves several substrates in addition to the extensively studied amyloid precursor protein. Some of these substrates, such as N-cadherin, are synaptic proteins involved in synapse remodeling and maintenance. Here we show, in rats and mice, that metalloproteases and gamma-secretase are physiologic regulators of synapses. Both proteases are synaptic, with gamma-secretase tethered at the synapse by delta-catenin, a synaptic scaffolding protein that also binds to N-cadherin and, through scaffolds, to AMPA receptor and a metalloprotease. Activity-dependent proteolysis by metalloproteases and gamma-secretase takes place at both sides of the synapse, with the metalloprotease cleavage being NMDA receptor-dependent. This proteolysis decreases levels of synaptic proteins and diminishes synaptic transmission. Our results suggest that activity-dependent substrate cleavage by synaptic metalloproteases and gamma-secretase modifies synaptic transmission, providing a novel form of synaptic autoregulation
PMCID:3169340
PMID: 21865451
ISSN: 1529-2401
CID: 136951

Cystatin C is released in association with exosomes: a new tool of neuronal communication which is unbalanced in Alzheimer's disease

Ghidoni, Roberta; Paterlini, Anna; Albertini, Valentina; Glionna, Michela; Monti, Eugenio; Schiaffonati, Luisa; Benussi, Luisa; Levy, Efrat; Binetti, Giuliano
It has recently become clear that proteins associated with neurodegenerative disorders can be selectively incorporated into intraluminal vesicles of multivesicular bodies and subsequently released within exosomes. Multiple lines of research support a neuroprotective role for cystatin C in Alzheimer's disease (AD). Herein we demonstrate that cystatin C, a protein targeted to the classical secretory pathway by its signal peptide sequence, is also secreted by mouse primary neurons in association with exosomes. Immunoproteomic analysis using SELDI-TOF MS revealed the presence in exosomes of at least 9 different cystatin C glycoforms. Moreover, the over-expression of familial AD-associated presenilin 2 mutations (PS2 M239I and PS2 T122R) resulted in reduced levels of all cystatin C forms (native and glycosylated) and of amyloid-β precursor protein (APP) metabolites within exosomes. A better understanding of the mechanisms involved in exosomal processing and release may have important implications for the fight against AD and other neurodegenerative diseases.
PMCID:2891183
PMID: 19773092
ISSN: 1558-1497
CID: 3629642